
Generalizing Operational Transformation to the Standard
General Markup Language

Author,
Faculty,

University, State, Country
address@domain

ABSTRACT
In this paper we extend operational transformation to sup-
port synchronous collaborative editing of documents written
in dialects of SGML (Standard General Markup Language)
such as XML and HTML, based on SGML’s abstract data
model, the grove. We argue that concurrent updates to a
shared grove must be transformed before being applied to
each replica to ensure consistency. We express grove oper-
ations as property changes on positionally-addressed nodes,
define a set of transformation functions, and show how to ap-
ply an existing generic operational transformation algorithm
to achieve this. This result makes synchronous group editing
applicable to the modern Web.

KEYWORDS: synchronous collaborative editing, operational
transformation, SGML, XML, groves, computer supported
cooperative work

Introduction
In the web, there is a trend towards multiple authors interact-
ing, in contrast to the traditional model of one author publish-
ing to many readers. In group editing, there is a trend away
from documents of limited general utility (idiosyncratic for-
mats or limited expressiveness) towards mainstream rich doc-
ument formats. The next two subsections explore these two
arguments.

In this paper, we argue that the intersection of these two
trends is synchronous collaborative editing of instances of
a structured, metadata-rich data model: trees. The expansion
of operational transformation into this new problem space
yields more useful forms of collaboration across the Web.

Tree data models need to be multiple-user
The World Wide Web is a fundamentally distributed system.
Current abstract models for XML and HTML [20] and their
parent language SGML [7] are composed of a single stream
of events applied to a mutable tree of objects. These are

suitable for the common case of one author generating op-
erations and many readers passively viewing the published
document.

Increasingly this polarization of roles is fading. The vision
of the Semantic Web [1] requires that an agent is able to cre-
ate, update, and peruse information freely to achieve its ends.
The more concrete Web Services architecture [3] from IBM
has no entrenched notion of “author” and “reader”, describ-
ing interactions across the Web in terms of endpoints residing
on peer sites. Even in traditional Web pages, the distinction
between author and reader is blurring. The Web Distributed
Authoring and Versioning [6] extensions to HTTP are de-
signed to support several authors in collaboration over a Web
resource. Wikis [4] are normal HTML pages that have hy-
perlinks enabling any reader to edit them at any time. Wikis
such as the Portland Pattern Repository serve as places where
a community stores and collaborative generates knowledge.
The Python, Perl, Tcl, Ruby, and Haskell communities are
also prominent among the several hundred wikis now in ex-
istence according to Google.

By discarding the assumption of a single source of opera-
tions to be applied to a single instance of the document, use-
ful collaborative tools can be constructed that leverage the
Web. These tools support coarse-grained collaboration, in
that different authors can edit different HTML files concur-
rently. They do not support fine-grained collaboration, where
two authors can work on different parts of the same HTML
document seamlessly, because they have no way to maintain
consistency within a shared instance of the data model. They
do not support synchronous collaboration, where each author
is aware of the rest of the group’s activity as it happens, be-
cause they have no notion of other instances of the document
which should reflect remote edits.

The coarse-grained and asynchronous collaboration available
on the Web is valuable. Upgrading it to fine-grained, syn-
chronous collaboration would only enhance the flexibility
that makes it valuable. To achieve that, we must be able
to collaborate within a document, and therefore need a data
model that can maintain consistency in the face of multiple
authors. In this paper we propose such a model, by adding
concrete addressing and operations to the SGML grove, and



defining how to apply multiple streams of these operations to
a replicated instance of that grove.

Multi-user linear data models need to be trees
Synchronous collaborative editing is useful because it allows
multiple authors to interact through a shared document. The
state of the art in synchronous collaborative text editing is
operational transformation. The major existing operational
transformation editors [19] [14] [12] use an abstract data model
of a single linear sequence of content data. Such a flat se-
quence can model flat text. It cannot model formatted text,
because that must contain metadata about font, weight, colour
for various nesting subsections of the document. It cannot
model any non-trivial vector graphic, as graphical objects
must be composable out of other shapes, and various levels
of nesting must have content data about shape, size, color,
position associated with them. It cannot model SGML, be-
cause the elements of the document defined by tag pairs must
be able to nest, and the elements must have data from the tag
properties associated with them. Therefore it cannot model
HTML nor XML, which are dialects of SGML. Therefore,
the techniques defined on this data model cannot be applied
to the bulk of the content on the Web. This constraint needs to
be removed to allow synchronous collaborative editing to be
relevant to the Web. The way to remove it is to adopt a more
general abstract data model and define techniques for oper-
ational transformation based on that model. Above we have
argued that the Web represents a large collection of shared
documents through which people interact, so the tree com-
mon to the Web is a very good abstract data model to adopt.

A Tree-based Data Model
Consider a document consisting of the plain text sentence:

The quick brown fox jumped over the lazy dog lying
next to the top of the cliff, and regretted it briefly.

which is a single object containing a logical sequence of
characters (Figure 1) in a normal text editor.

text "The quick brown fox jumped over the..."

Figure 1: A paragraph as a single sequence of char-
acters

Compare this with the information expressed by

The quick brown fox jumped over the lazy dog lying
next to the top of the cliff, and regretted it briefly.

There is still the content data (the text) but there is also data
about the content data (metadata) - some parts of the sentence
are emphasized, and others are not, conveying meaning to the
other authors. Instead of one element of data, there are three:
“The quick brown fox jumped over the” with no emphasis,

“lying next to the top of the cliff” with emphasis, and “and
regretted it briefly” with no emphasis. This is shown in Fig-
ure 2.

text
type text

"The quick brown fox..."
italic "no"

text
type text

"lying next to the..."
italic "yes"

text
type text

"and regretted..."
italic "no"

paragraph

children

type

Figure 2: A paragraph as several sequences of char-
acters

After some more editing by the various authors, Figure 3
shows

The quick brown fox jumped over the lazy dog lying
next to the top of the cliff, and regretted it briefly.

The second element of the document is itself containing three
elements as its content data (“lying next to the”, “top”, “of
the cliff”), each with their own metadata

(A,[])

(A,[0]) (A,[1]) (A,[2])

(A,[1,2])(A,[1,1])(A,[1,0])

text
type text

"The quick brown fox..."
italic "no"

type
text
type text

"and regretted..."
italic "no"

italic

paragraph

children

type

"yes"
phrase

texttype
text "lying next to the"

type
text
bold

"top"
"yes"

text type
text "of the cliff"

text

children

Figure 3: A paragraph as several sequences of char-
acters

The data model this exemplifies is a tree of nodes. A node is
a collection of properties, and has (according to its type):

� which property keys (strings) it contains, and what values
each property may have,

� at most one subnode property which holds a sequence of
subordinate nodes, and

� exactly one content property which holds the content data
of the node (the text, in the example).

Our proposed set of property types are scalars (integers, real
numbers, characters), sequences (strings, vectors of values
indexed by number), and nodes. An edge exists in the tree
from each node containing such a nodal property to the node
in the property value. Subnode edges are edges due to the
subnode property. The subnode edges link the nodes into a
subnode tree. A child property is a subnode property that



is also the content property for its node. Child edges aris-
ing from child properties represent parent-child relations be-
tween nodes. The child edges form at least one content tree
out of the grove nodes Where there is only one content tree,
the content tree root is also the grove root, or root of the
subnode tree. Nothing rules out having several content trees,
hence the name grove.

The tiny grove in Figure 3 has a single content tree. The root
is an element of type “paragraph”. Its subnode property is
named “children”. The elements held in this property’s value
(some text, a phrase, and some more text) are the content
data of the paragraph, so this is also a children property and
they are child elements. The first and last children are leaf
elements which hold plain text in their “text” property and
metadata describing presentation in their “italic” property.
The “text” property is the content property for a text node,
but it is not a children property because it does not contain
other nodes. The second node of the root is of type “phrase”.
It has three children of its own, all “text” elements, each hold-
ing some content data. The “italic” property in their parent
affects them, but each adds its own metadata - the middle one
has a value of “yes” for its “bold” property.

The data structure described above is essentially
�

the grove
defined in the Standard General Markup Language [7] and
HyTime [9] standards as the abstract data model for SGML.
Where the distinction matters, we will call it a generalized
grove. The same concepts are used in the Document Object
Model [20] for XML, the RELAX NG [13] schema language
for XML, and the DSSSL [8] transformation language for
SGML.

In our architecture, each author’s editor holds a private replica
of the common grove at their own site. Each operation is ap-
plied by the site whose author generated it as a local opera-
tion, and then broadcast to the other sites, who transform it
and apply it as a remote operation on their groves to maintain
consistency.

Addressing a Grove
The messages between sites need to specify which nodes
are to be affected. For this purpose a consistent addressing
scheme is needed. Such an addressing scheme needs the fol-
lowing characteristics:

1. Addressability of locations as well as nodes. It is essen-
tial to be able to discuss locations that a node does not yet
occupy, such as when placing a node.

2. Light weight. Addresses which occupy less space and al-
gorithms which are less complex and costly are preferred.

�
SGML groves do not support real-valued numbers. More importantly,

single-author groves have exactly one subnode tree. Holding parts of the
grove being worked on concurrently can require more than one. SGML
groves are also not replicated.

3. Site independence. The same address should refer to the
same node on all sites, and dereferencing or generating
an address should not require the exchange of messages,
which costs time, bandwidth and complexity.

4. Domain independence. Schemes that do not rely on as-
sumptions peculiar to one notation or one kind of grove
are preferred.

There are two basic approaches: name each node and address
them by name, or choose certain nodes as landmarks and ad-
dress nodes by their position with respect to these landmarks.
For small groves, naming all nodes is workable. Lightweight
names can be chosen independent of the contents of the node
or the local structure of the grove and therefore of the site or
domain

�
. We observe two problems with this approach.

The minor problem is that a location must be referred to by
the label of the node that occupies it. If a node has no chil-
dren, but we wish to refer to the location where its first child
would be, how can this be accomplished? For certain cases,
such as Figure 4, an operation can refer to landmarks. Here

A B A B? ?

Figure 4: Why pure naming is ambiguous

an author is attempting to create a node between the existing
nodes

�
and � , and specifies them to address that location,

illustrated on the left. This only works if no other author
moves one of the landmarks in the interval between the first
author issuing the operation and the other sites receiving it.
The right-hand tree of Figure 4 shows such a case. Is the new
node next to

�
or � ? It can be shown that a single landmark

is insufficient - there is no unique location “to the left of � ”
or “to the right of

�
”. So long as order is important � this

landmark problem will occur.

The major problem is that non-trivial hypertexts such as wikis
[4] and online books have many nodes. To honour a remote
operation, a site must translate the addresses it gives into use-
able references to actual nodes. When this information is
not in the names, it must keep a table mapping names to ad-
dresses. This table costs one record of space for each node
named, which scales poorly to large projects with multiple
authors.

�
Let the node � be the �
	�� node in the grove created by the operation 
 ,

which was the � 	�� operation generated by site � . Then the tuple �������������
is a suitable name for � . Such a name is lightweight, as � , � , and � are
cardinal numbers. For clarity, we will abbreviate each unique node name as
a letter of the alphabet; instead of ������������� we will write � . 

To see that order is important in a document, consider a book chapter
whose paragraphs are in an arbitrary order that varies between sites.



Therefore, we adopt a positional addressing scheme where
the minimum of nodes have names. All others are anony-
mous, described by the path from their nearest named ances-
tor. A grove address � for a node is the name of this an-
cestor, plus a vector of indices describing the path between
the ancestor and it. We will write ����� to mean the name of
the ancestor which is at the root of the path � and ��� �	� for
the ��

� element of the path vector. ��� ��� is the position of the
first node along the path in the children property of the path
root. ������� is the position of the second node along the path in
the children property of the first node in the path. ��� �	� is the
position of the ����������

� node of the path in the children prop-
erty of the � 

� node of the path. Alternately, a complete grove
address is written ������� � � ��� � ��� ������� . The mapping between an
anonymous node and its address is stored in the grove itself,
instead of bulking up the lookup table. We choose to give
names only to the root of each subnode tree, which cannot
be described as another node’s child. For a concrete exam-
ple, Figure 3 shows the grove with the addresses next to each
node.

Operating on a Grove
The fundamental operations we support on groves need to
meet the criteria:

1. Completeness - any valid grove can be built from any other
valid grove by applying a sequence of fundamental opera-
tions.

2. Disambiguity - each fundamental operation (and its operands)
contains enough information to execute correctly by itself.

3. Parsimony - useful tasks are expressible efficiently in terms
of these fundamental operations.

The set of operations insert, delete, and change fits
these criteria. The first two are structural - they change the
structure of the grove. The latter is a mutation - it changes
the data without changing the grove structure.

Insertion The operation !#"%$�&�'�( ��)*�+",��-.�0/1����� �0� adds a node
to a subnode tree. If a node with name 2 exists in the grove,
it is inserted in the 34

� position of the children property of the
node whose grove address is � - it becomes the 35

� child of
� . If no such node exists, a node of type 6 is created and
inserted as the 34

� child of � , with initial values supplied by
any other operands.

Deletion The operation 78& 9#&�(�&:�
)*��"4��-;� excises the 3,

� node
from the children property of the node whose grove address
is � when executed.

When the base of a branch is removed from a tree, the rest
of the branch follows. To see why, consider the grove shown
on the left of figure 5, where nodes of type D may only have
children of type A or C, and are forbidden children of type
B.

<=<<=<<=<<=<>=>>=>>=>>=> C A

D

B

A

B

C

C A

D

C

C

C

Figure 5: Why deleting single nodes is undesirable

When the shaded node is deleted, its descendants must ei-
ther be removed with it or replaced in the tree. If we put
the deleted node’s children in its stead, the resulting grove
is no longer valid. Rather than devise ad-hoc, application-
specific rules forbidding certain deletions, we consistently
remove the entire branch.

Given this, we must consider the possibility that another au-
thor was working on the branch, and so there might be re-
mote operations in transit that refer to nodes in the branch.
We may not destroy the nodes concerned until we can prove
this is not the case, so we will save the excised as another
subnode tree. The subnode tree root will need a label, sup-
plied as the 2 operand in an 7?&�9@&A(�& . As a bonus, saving the
pruned branch as a separately labelled subnode tree makes
implementing cut-and-paste or other movement of existing
parts of the grove trivial, but that is beyond the scope of this
paper.

Mutation The operation BDCFE "?GH&I�
)*��JK��L�� �����M� changes the con-
tent data or metadata in a grove node. Before it is executed,
the property whose key is N on the node of the grove whose
address is � has the value O . After the BDCFE "?GH& is executed, it
has the value P � O � . The function P , which takes the old value
and returns the new value, is a transition function.

In principle a transition function can be arbitrary. For SGML,
HTML, or XML, property values are strings and string edit-
ing is of most immediate value. An appropriate set of transi-
tions can be found in [19], which defines !#"%$�&�'�( and 78& 9#&�(�& on
strings and gives a set of inclusion and exclusion transforma-
tions. The fourth and succeeding operands supply any other
parameters the transition function needs - insertion requires
a string to insert and an offset within the string to insert it at,
for example.

Strictly speaking, the minimal complete set of operations is
node creation and deletion. Mutating a node could be ex-
pressed as deleting that node and inserting a new node in the
same place with the changed property value. This is not par-
simonious because a node with 3 descendants would require
�
3;�RQS� operations to mutate it. All �
3T�U��� nodes in the
branch would have to be reconstructed, which takes �
3V�W�X�
insertions. A concurrent operation on a node after its old in-
carnation was deleted would be lost, as there is no way to
know the old and new nodes are the same, and the old ad-



dress would either be invalid or valid but point to the wrong
node during the reconstruction.

Vector Operational Transformation
Background
A consistency model We adopt a consistency model due to
Sun et al [19]. A set of groves is consistent iff it exhibits the
three properties:

1. Convergence When all sites have executed the same set of
operations, the structures of corresponding groves and the
value of properties on corresponding nodes of each grove
are identical.

2. Causality preservation For each pair of operations ��� ����� ,
if ����� ��� , then ��� is seen before ��� by all authors
- effects follow causes. The standard definition of � is
due to Lamport [11]. Given two operations �	� and ���
originating from sites 
�� and 
�� , we write ���
����� (read
“ ��� happens before �	� ”) iff

(a) 
����� 
�� and ��� was executed at 
�� before ��� was cre-
ated, or

(b) 
 � � 
 � and � � was generated before � � was gener-
ated, or

(c) ����� such that � � ����� and ������� � .

We say � ��� � � (read “ � � concurrent with � � ”) iff neither
���
����� nor ��������� .

3. Intention preservation At each site where a given operation
� is executed, the execution effect is same as the original
intention of � at the site it was generated. Following Sun’s
approach, we define the intention of � as the syntactic ef-
fect of � at the site of its origin.

We enforce causality by maintaining a vector clock at each
site. The vector clock at site � , 6�� , is a vector of integers such
that 6���� �S� is the number of operations from site � that have
been executed so far at site � . We speak of an operation � as
causally ready at a site � if that site’s vector clock indicates

1. It is the next operation to be executed from its site of origin.

2. Each operation ����� , has already been executed here.

If an operation arrives from another site and is not causally
ready, it is delayed until the missing operations have arrived
and been executed. Local operations are always causally
ready and thus never delayed.

Path comparison In the following sections, we will need to
compare two paths and determine any areas of congruence
between them. The following defines this path comparison:

B��! #"%E '�&I��)%$:��)%&:�
if �+���'�I� � �
�(�����

for �*) � � ������+ � � +-, ���
if ��� � + � � + �

return PREFIX �
� �
elif �
� � � �	�.�� � � � �	���

return DIFFERENT

if ��+ �(��+ � + �(�/+ �
return SAME

else
return SUFFIX

else
return DIFFERENT

It takes two grove addresses, compares them, and returns one
of four verdicts:

1. The two paths are DIFFERENT branches from the same
path root, or run from DIFFERENT roots. No operation
at � � could affect the address of the node at � � , or vice-
versa. No operation at � � could interact with any operation
at � � , or vice-versa.

2. The first and second paths point to the SAME node. An op-
eration at � � cannot affect the address of the node at � � ,
only the addresses of � � ’s children. An operation at � �
might still interact with an operation at � � on the same
property, but that will only require adjusting the parame-
ters of the operation at �#� , not the addresses.

3. The second path ( � � ) is a PREFIX of the first path ( � � ),
meaning the � � ’s vector forms the first � elements of � � ’s
path vector and the node at �(� forms part of the path of
�'� . A structural operation at �#� may therefore affect the
path vector of the node at �(� . Which component of that
vector is affected depends on � , so it is passed as part of the
result, for example PREFIX �10:QS� .

4. The second path ( �#� ) is a SUFFIX of the first path ( �(� ).
This is the dual of the previous case. An operation at �#�
will not affect the address of the node at �#� .

Consider the two-tree grove of Figure 6. The paths to the
nodes at addresses � � � � �?� �S�0����� and � � � � �?�DQX��� branch off from
each other at node � � � � ����� , so compare as DIFFERENT. The
paths to the nodes at addresses � � � � �?� �S� �A��� and ��� � � �?�0�����
start at different roots, so they also compare as DIFFERENT.

The address � � � � �?� �S� �A��� compares out as a PREFIX �12:� of
� � ��� �%���S� �S�0�?����� � , as the paths share the same root and the
first 3 nodes in the path. The address ��� ��� �%���?�0����� com-
pares out as a SUFFIX of the node address ��� ��� ��� , as does
��� ��� �%���?� �S�0����� , but B3�4 #"%E '0&I�+�65 ��� �%���%�������M���15 � � �?�0�?� �S���I� ���
yields DIFFERENT.



(A,[0])

(A,[])

(A,[0,2])

(A,[0,1,0]) (A,[0,1,1])

(A,[0,1,1,0,1])

(B,0,0,1,0])

(B,[0,0])

(B,[0])

(B,[])

(B,[0,0,0])

(A,[0,1])

Figure 6: Comparing paths in an example grove

Context To discuss preserving operation intentions, we must
introduce Sun and Ellis’ notion of operation context [17].
The context applying to a document state is the sequence of
operations that were applied to bring it from the initial state
to the current state. In particular, we distinguish two con-
texts that are important with respect to an operation � . The
original definition context of � is the one that describes the
document the original user saw when they issued the opera-
tion. We write � ��� � � if the current definition context of
� � is equivalent to the current definition context of � � . We
write � ���� � � if � � ’s current definition context is ( � � ’s
current definition context) + �	� ; ��� has ��� immediately
preceding it. ��� is said to be context preceding �	� . The ex-
ecution context of � is the one that describes the document
when � is executed on it. In single-user editors, � is exe-
cuted at the time is it generated, so the two contexts always
match and the effect of � is always as intended. In editors
with multiple replicas of the grove, as here, this is only true
at the site which generated � . To achieve the intended effect
of � at other sites, we must check whether � ’s current defi-
nition context � matches the current execution context ��� .
If we only try to execute � when it is causally ready, then
all operations in � will either have happened before � and
are already in � , or will be concurrent with � and not yet
in � . If there are any of the latter, then the � needs to be
expanded to include them and � needs to be transformed to
take account of their effect on the grove.

A motivating example Consider the authors Alice, Bob, and
Carol collaborating on the document of Figure 6. Alice edits
the text in node � � ��� �%���H���S�0�?� �A��� of the grove, so her editor
generates a BDC%E "%GS&S���	�*��� �%���H���S�0�?� �A���M��
I(�&
�:(�
?� ������� operation
and broadcasts it to Bob and Carol’s sites. At the same time,
Bob inserts the section of text rooted at ��� ��� ��� into the main
document as the second section of the chapter at � � � � �?� �A��� .
His editor generates an !@"%$�&�'�(����	�*��� �%����� �A���S��5 � section � oper-
ation and broadcasts it to Alice and Carol’s sites.

From Alice’s point of view, the editor makes her change, then

�
If as each operation is executed it is stored in a history, the operations

in the history form the current execution context.

receives and honours Bob’s change, and the net result at her
site is illustrated in Figure 7. Alice’s change (call the oper-

(A,[0])

������������
������������

������������
�������� ������������

����
����

(A,[])

(A,[0,2])

(A,[0,1,2])

(A,[0,1])

(A,[0,1,0]) (A,[0,1,1])

(A,[0,1,1,0])

Figure 7: The end result at Alice’ site.

ation ��� ) was applied to the place that Alice intended it to
happen. The section of text that Bob wanted inserted is in
the place Bob intended it to be (call this operation �
� ). Al-
ice sees both her and Bob’s changes in a single consistent
document. The history at Alice’ site looks like � � � ��� � � .
From Bob’s point of view, the editor makes his change then it
receives Alice’s change. Now, after node ��� ��� ��� is inserted,
the node at � � � � �?� �S���H���%���A��� is no longer the one that Alice
was intending to change. Instead, � � � � �?� �S� �S���%����� � points to
somewhere in the text that Bob has just pasted, and executing
��� immediately as is has two results:

1. The final state of the grove at Bob’s site is not the same as
Alice’s in figure 7. There is no convergence.

2. The effect of Alice’s operation � � does not match its in-
tended effect. There is no intention preservation.

The replicated grove would no longer be consistent, accord-
ing to our consistency model. So Bob’s editor should not ex-
ecute Alice’s operation as is. Instead, it should construct an
operation ��� � that points to the right node, and execute that.
The problem is that �	� ’s original definition context does not
include � � (it hadn’t happened at Alice’s site at the time Al-
ice generated � � ), but the execution context at Bob’s site
does include � � . The solution is to transform � � to have a
definition context that includes � � ’s original definition con-
text, plus � � . We write this � � � �"! / �$# $ �%# & � , where ! / is
defined in the next section. We say Bob’s editor transforms
��� against ��� . ��� � , the execution form of �	� at Bob’s site,
evaluates to BDC%E "?GS&I���	� � � �?���H���H���?� �A���M�&
�(�&
� (&
?� ��� � � , and af-
ter executing ��� � , Bob’s operation history is � �	������� � � and
Bob’s grove looks the same as Alice’s. We say that � �
�:�������
is equivalent to � �	��� ���'� � , because both sequences of opera-
tions take the same initial state to the same final state.

From Carol’s point of view, her editor receives � � , applies
Bob’s edit to her local copy of the grove, and saves it in her



history. ��� is then received from Alice’s site, and her editor
compares its vector timestamp with the operations in the his-
tory. It concludes that � � � � � , applies �H6 to transform � �
in the same way as Bob’s site, and saves that in its history.
Carol then makes a change of her own, deleting the chapter
at � � ��� �%���S�0����� in her grove. Her editor obeys, generates op-
eration ��� ( 78&�9@&A(0&S�+� �*��� �%���A���M�0�?��� � ), timestamps and broad-
casts it to Alice and Bob. Meanwhile, Alice continues to edit
the same text as before and her editor issues another opera-
tion ��� � , BDCFE "?GH&I�+�	� � � �?� �S�0Q?���%���A���M� ��� �+� , which is broadcast
to Carol and Bob. As before, Bob’s editor receives � � . It
checks � � ’s timestamps against those of the operations in
its history, and concludes �	� � � � , and ��� � � � � . � �
does not need transforming against these operations and is
executed by Bob’s editor as is. The operation history is now
� � � ��� � � ������� . Then � � � from Alice arrives. Again, the orig-
inal definition context of � � � does not match the execution
context at Bob’s site, because �	� had not reached Alice at the
time � � � was created. Bob’s editor compares � � � ’s times-
tamps against its history, and finds that �	� � � � � . To find an
execution form with a current definition context equivalent to
the current execution context of three operations, it computes
��� � � ) ! / �$#�$ � ��#��M� , where the inclusion transformation is
defined in the next section.

Operational transformation is the technique of determining
the difference between an operation’s current definition con-
text and the current execution context, and then rewriting the
operation so that its current definition context is equivalent to
the current execution context, so that when the transformed
operation is executed, it will have the intended syntactic ef-
fect. Sun et al [19] defined the GOTO algorithm for this
purpose. Given a causally-ready operation, and a history
containing the current execution context, it returns a trans-
formed version of the operation whose current definition con-
text matches the history. GOTO proceeds as in the above ex-
ample, comparing timestamps to those in the existing history
to determine where definition and execution contexts do not
match and applying transformation functions as necessary to
make them match. For details, the reader is referred to [17].

The original application of GOTO was to the domain of flat
linear text. That application comprised a data structure (an
array of characters), an addressing scheme (array indexing),
some operations on that data structure ( !@"%$�&�'�( and 78& 9#&�(�& of
strings), and definitions of ! / and � / for those operations.
In this paper we present a second concrete application of
GOTO. In previous sections we have presented a data struc-
ture (the generalized grove), an addressing scheme (path vec-
tors) and some operations ( !@"%$�&�'�( , 78& 9#&�(�& , BDCFE "?GH& ). Below
we present our definitions of ! / and � / .

Inclusion Transformation

In this section we give our definition of the inclusion trans-
formation function, discussing the first two cases using the
example of the previous section. We will use the following

standard notations for slices of lists: ��� ���
	0� means the � 

�
through 	D

� elements of a vector, inclusive. If � is omitted,
it is assumed to be 0, if 	 is omitted, it is assumed to be + � + ,
the size of � . If � is [1,4,2], then y[:] is [1,4,2], and y[0:1]
is [1,4]. A new vector with exactly one element � is written
[x], just as [4,2,3] is a vector with three elements. The ex-
pression �#�S� 2%�0Q��=� � 
8� 0I� means to append � 
8� 0I� to ���H� 2?�DQX� ,
with a result of �#�S� 2%�0Q?��
8� 0I� .
Recall that Bob’s editor had to transform Alice’s first oper-
ation ( ��� � BDC%E "?GS&H�+�	� � � �?� �S���H���%���A���M�&
�(0& � (&
%����� ��� ) against
Bob’s first operation ( ��� � !@"%$�&�'�( �+� �*� � �?� �A���M� �S� 5 � section � ).
This was written as � � � � ! / �$# $ �%# & � , where ! / is defined:

! / � BDC%E "%GS&S��)%$:�+JK��L0�A�+!@"%$�&�'�(��
) &?�+",��-.�0/ �+�
�'� � ) �'�
if �+���'�I� � 2 �

�(� � ) �+���'�D�M�0�'� ��� �8� � 3K� ���(� ��� ���
elif � B��! #"%E '0&S��)%$:��) &H� � PREFIX ��! �+� and ��3�� �'� � �	� �

� � � � �	� ) � � � �	� �W�
return BDCFE "?GH&S�
) $ � �+JK�+L0�

��� � is arrived at by comparing the grove addresses � � and
�(� for the two cases where ��� might affect the structure of
the tree near where � � operates. First, � � ’s target might
actually be on the branch that � � inserts into the tree, as
in Figure 8 If � � has happened first, then that target node

Nb

N’a

Na

M

Figure 8: Inserting an existing branch.

is now a descendant of �#� and so �(� � is prefixed by �(� .
Second, if �(� is a PREFIX of �(� , then ��� has inserted a
new sibling next to the � 

� node along �(� ’s path. For this
example, the new sibling has pushed the target of �
� up one
position, so �(� � � �	� is incremented to follow it, and �	� � �
BDCFE "?GH&S�+� �*� � �?� �S� �S���%����� �A��
�(0& � (&
%��� ����� .
Recall that Alice’s second operation ( � � � ) had to be trans-
formed against Carol’s first operation ( �	� ), written � � � � )! / �$# $ � ��# � � , where ��� � 78&�9@&A(0&H���	�*��� �%����� �A���?��� � . This
case of ! / is defined:

! / � BDC%E "%GS&S��) $ �+JK��L0�A��78& 9#&�(�&:�
) & �+"4�0-��+�
� � � ) � �
if � B��! #"%E '�&S��) $ ��) & � � PREFIX ��! �+�



if �
3�� �'� � �����
�(� � � �	� ) �'� � � ��� , �

elif �
3 � � � � �����
� � � ) �	2 ��� � � �K�W� � ���

return BDC%E "?GS&S��) $ ���+JK��L0�

As with the previous case of this transformation function, the
targets �'� and �'� of the two operations are compared. If �#�
is a PREFIX of � � , then the deletion applies to a node on the
path or one of its siblings. In this case, 3 � � and � � � QX� � Q ,
so a sibling of � � � � �?���H�0Q�� � is being removed, pulling that
node to the left and leaving it with the address � � � � �?���H����� � .
That element of the path vector is decremented in the final
execution form. If the deletion had taken out � � � � �?���H�0Q�� �
(that is, if 3 had been equal to �(� � QX� ) instead, then we would
have the situation of Figure 9. The victim’s branch is now
a new tree and a fresh path must be constructed from the
pruned branch.

(A,[0])

������������
������������

���� 	�		�	
�

�


(A,[])

(A,[0,2])(A,[0,1])

(A,[0,1,0])

(A,[0,1,1,0])

(A,[0,1,1])

(C,[])

(C,[0,1])

Figure 9: When a 7?&�9@&A(�& has moved a branch.

The other three cases for structural operations are given be-
low without further discussion.

! / ��!@"%$�&�'�(���)%$:�+"�$H��- $H��/ $��A�+!@"%$�&�'�(��
) &?�+"�&?��- &%��/ &H���
� � � ) � � ; 3 � � ) 3 �
if �+��� � � � 2 � �

� � � ) �+�
� � �M��� � � � �8� � 3 � �8��� � � � ���
elif � B��! #"%E '0&I�
) $ �0) & � � PREFIX ��! �+�

if �
3 � � � � � �	��� or ��3 � � � � � �	� and $+!#(�&:�
) $ ��� $�!�(0&H�
) & ���
�(� � � �	� ) �'� � �	� �W�

elif � B��! #"%E '0&I�
) $H�0)%&H� � SAME �
if �
3���� 3���� or ��3�� � 3�� and $�!�(0&H��)%$��
� $�!#(�&H��)%&H���

3�� � ) 3�� �W�
return !@"%$+& '+(X�
) $ � �+"�$ � ��- $:��/ $X�

! / ��!@"%$�&�'�(���)%$:�+"�$H��- $H��/ �M�078&�9@&A(0&H��)%&%��"�&?�0- &S�+�
�(� � ) �(� ; 3�� � ) 3��
if � B��! #"%E '0&I�
) $ �0) & � � SAME �

if �
3 � � 3 � �
3 � � ) 3 � � , �

elif � B��! #"%E '0&I�
) $ �0) & � � PREFIX ��! �+�

if �
3���� �'� � �	� �
�'� � � �	� ) �(� � �	��, �

elif �
3 � � � � � �����
� � � ) �	2 � ��� � � �K�W� � � �

return !@"%$�&�'�(��
) $ ����" $ � ��- $ ��/ �
! / ��78&�9@&A(0&H��) $ �+" $ ��- $ �M��!#"%$�&�'�( ��) & ��" & �0- & ��/ & ���

�'� � ) �'���+3�� � ) 3��
if � B��! #"%E '�&S��)%$:��) &H� � PREFIX ��! �+�

if �
3�� �'� � �	� � or ��3 � �(� � ��� and $+!#(�&:�
) $X�
� $+!#(�&:�
) &H�+�
�'� � � �	� ) �(� � �	� �W�

elif � B��! #"%E '0&S��)%$:��) &H� � SAME �
if �
3���� 3����

3�� � ) 3�� � �
return 7?&�9#&�(�&:�
) $ ���+"�$ � ��- $X�

The case below has one interesting sub-case, where both op-
erations are deleting exactly the same node, that is � � is the
SAME as �'� and 3�� � 3�� . In this case it should not be
deleted a second time. We phrase this result as a BDC%E "?GS& op-
eration that makes no change at all ( !@7?&�":(�!#(�� ) to the children
property in question.

! / ��78&�9@&A(0&H��)%$:�+"�$H��- $��M�078&�9@&A(0&H�
) &?�+"�&?��- &:�+�
�'� � ) �'���+3�� � ) 3��
if � B��! #"%E '�&S��)%$:��) &H� � SAME �

if �
3���� 3����
3�� � ) 3�� , �

elif �
3�� � 3���� and ��$+!#(�& �
) $�� � $+!#(�& � L�) &:�
return BDC%E "?GS&S��) $ � BDC !#9 78'0&�" ��!@78& ":(�!#(��%�

elif � B��! #"%E '0&S��) $ ��) & � � PREFIX ��! �+�
if �
3 � � � � � �	� �

� � � � �	� ) � � � �	��, �
elif �
3 � � � � � �����

�'� � ) �	2 � ���(�H� �K�W� � � �
return 7?&�9#&�(�&:�
) $ � �+"�$ � ��- $X�

Only structural operations can have an effect on grove ad-
dresses in operations they are transformed against, as BDC%E "?GS& s
to other properties do not affect the structure of the grove.
Therefore,

! / ��78&�9@&A(0&H��) $ �+"4�0-��M� BDC%E "?GH&S�
) & �+JK�+L0�+�
return 7?&�9#&�(�&:�
) $ ��"4��-;�! / �
!#"F$+& '+(X�
) $ �+",��-.�0/ �M� BDCFE "?GH&I�
) & �+JK��LD�+�
return !@"%$�&�'�(��
) $ �+"4�0-.��/ �

Similarly, ! / � BDC%E "?GH&S�
) $:�+J $S�+L $��A� BDC%E "?GS&S��)%&F�+J &8��L &H��� returns
the original operation unless the other operation has changed
the same property on the same node ( � � � � � and N � � N � ).
Such a conflict is handled by defining transformation func-
tions �H6 and � 6 to rewrite them to coexist in the same fash-



ion as conflicting structural operations. Such have been de-
fined by Sun and Chen in [19] for operations that insert a
substring and delete a substring.

Exclusion Transformation
An exclusion transformation function is the dual to the in-
clusion transformation function, used to remove an opera-
tion from another operation’s current definition context. The
strategy is the same as for inclusion transformation - the grove
addresses of the two operations are compared to see if one
had affected the address of the target of the other, and appro-
priate adjustments made. Below is one case of � / ��� .

� /1� BDC%E "?GH&H��) $ ��JK��L0�A��78& 9#&�(�& �
) & �+"4�0-��+�
�(� � ) �(�
if �+���'��� � 2 �

�'� � ) �+�
�(�D�M���(� ��� � �8�W� 3K�8���'� � � ���
elif � B��! #"%E '0&I�
) $H�0)%&H� � PREFIX ��! �+� and ��3�� �(� � �����

�'� � � �	� ) �'� � ���8� �
return BDC%E "?GS&S��)%$ � �+JK��L0�

The local grove had ��� ( BDC%E "?GS&H�
)%$H�+JK��LD� ) and then ���
( 78&�9@&A(0&H�
) &?�+",��-���� ) applied to it. We attempt to find what �	�
would have been had �	� never happened. If �	� had moved
the branch containing �	� ’s target node ( �
�(��� � 2 ) then
had ��� never happened, the branch would be at � � , and a
path reflecting this is constructed. If �	� had removed a sib-
ling of a node on � � ’s path ( � � is a PREFIX of � � ) then that
sibling would still be there if � � had never happened, so the
appropriate element of � � � ’s path vector is incremented. For
each case of the inclusion transformation function, the corre-
sponding case for the exclusion transformation function has
been defined in like manner.

Related Work
Other work in Operational Transformation
The differences between this work and other editors that use
operational transformation arise mostly from the domain
(trees, not flat text) and the control algorithm used to apply
the transformation functions. The GROVE editor [2] was the
pioneering effort in this area. It transforms incoming oper-
ations against a linear history according to the dOPT algo-
rithm, but counterexamples were given by Ressel et al [14].
They constructed a corrected version, the adOPTED algo-
rithm, which requires an � -dimensional interaction graph as
well as a linear history, and built an Emacs-like text editor
with it. The REDUCE editor [19] uses the same GOTO al-
gorithm as our current work, which only requires a linear
history. We take its stringwise editing operations, and their
transformation functions to handle changes to text-valued
properties of grove nodes.

Other Editors of Trees
We are not aware of much work in group editing of trees; the
projects we are aware of are discussed in this section. The

MU3D editor [5] edits VRML and uses the VRML scene
graph (a forest of trees) as its abstract data model. Like our
work, it uses a path vector to address nodes in the tree and is
fully replicated. In contrast to the unconstrained collabora-
tive editing possible with operational transformation, MU3D
maintains consistency by requiring users to lock a branch of
the scene graph before modifying it. Other users may not
work with a locked branch, limiting the options for collabo-
ration, so conflicts are prevented rather than repaired.

Ionescu and Marsic [10] have taken an alternative approach
to maintain consistency in the tree data model of XML. Their
DISCIPLE application framework contains components that
edit XML. As in this work, nodes in the tree are addressed
by path vector from the tree root, and operations containing
these addresses are broadcast by each site to its peers. Unlike
this work, concurrent operations that interact are not rewrit-
ten to coexist, but instead are subject to arbitration according
to their dARB algorithm. Operations whose sites lose ar-
bitration rounds are annulled and their intentions lost. Our
work enables these intentions to be preserved and visible to
all authors, instead, and avoids the overhead of running their
distributed arbitration algorithm at every conflict.

Ellis and Gibbs’ GROVE editor [2] has a textual outline as its
document type and the tree of outline entries as its abstract
data model. As discussed, it uses operational transformation
and so does not need locking or arbitration. Our work has the
advantage of extending a standard data model (the grove) for
widely-used document types (SGML, XML, HTML). Since
the GROVE editor was developed before HTML, it used a
data model and document type endemic to it, limiting its use
as a tool for practical work.

Conclusions
This paper makes the following contributions to the fields of
structured markup languages and computer-supported coop-
erative work:

1. An analysis of how the single-author data models in SGML
hinder collaboration within the World Wide Web.

2. A scalable positional addressing scheme applicable to any
grove representing any data structure, and a common set
of fundamental operations for groves that is complete and
parsimonious, as a basis for transformation functions.

3. A set of transformation functions for structural operations
on a grove, suitable for use with the GOTO operational
transformation control algorithm to remove this hindrance.

Before this work, the only method for synchronous collabo-
rative editing of an XML document that did not require lock-
ing or other turn-taking techniques to maintain consistency
was to use an operational-transformation text editor on the
XML source. This fell far short of the useability of corre-
sponding single-user tools for XML/SGML editing. Using



our generalized grove and our transformation functions, ex-
isting single-user tools can readily be retrofitted to support
collaborative work. These tools can be for XML/SGML,
or any other document type with a grove-like abstract data
model, such as VRML.

The next step is to finish building a reference implementa-
tion of the ideas in this paper. To this end, we are currently
engaged in modifying Amaya, an open-source WYSIWYG
editor written by the W3C’s Document Formats Activity as a
testbed for the XHTML (hypertext), SVG (vector graphics)
and MathML (mathematics) dialects of XML. Internally it
already uses a grove-like abstract data model, so the remain-
ing work is to persuade instances of the editor to broadcast
local operations and accept transformed remote operations
for local execution.

After that, we will look at related techniques for handling the
challenges of unconstrained synchronous concurrent editing.
The GRACE editor [18] pioneered the technique of temporar-
ily creating multiple versions of objects to accomodate con-
flicting, concurrent changes. We have already created an ex-
tension of the vanilla GOTO algorithm which uses multiple
versioning as an option in cases where transformation is in-
sufficient to preserve operation intentions. We will investi-
gate the utility of this extended GOTO, and other techniques
[15] [16] in the context of our grove work.

REFERENCES
1. Tim Berners-Lee, James Hendler, and Ora Lassila. The

semantic web. Scientific American, May 2001.

2. C.A.Ellis and S.J.Gibbs. Concurrency control in group-
ware systems. In Proceedings of the 1989 ACM SIG-
MOD international conference on Management of data,
pages 399–407. ACM, 1989.

3. Erik Christensen, Francisco Curbera, Greg Meredith,
and Sanjiva Weerawarana. Web Services Description
Language (WSDL) 1.1. Technical report, World Wide
Web Consortium, March 2001.

4. Ward Cunningham. Wiki Wiki Web. Web at
http://c2.com/cgi/wiki?WikiWikiWeb, February 2002.

5. Ricardo Galli and Yuhua Luo. Mu3D: A Causal Con-
sistency Protocol for a Collaborative VRML Editor. In
Proceedings of the Web3D-VRML 2000 fifth symposium
on Virtual Reality Modeling Language. ACM, February
2000.

6. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and
D. Jensen. HTTP Extensions for Distributed Author-
ing - WEBDAV. RFC 2518.

7. ISO/IEC 8879:1986 Standard Generalized Markup
Language (SGML), 1986.

8. ISO/IEC 10179:1996 Document Style Semantics and
Specification Language, 1996.

9. ISO/IEC 10744:1997, Hypermedia/Time-based Struc-
turing Language (HyTime) - 2nd edition, 1997.

10. Mihail Ionescu and Ivan Marsic. An arbitration scheme
for concurrency control in distributed groupware. In
Proceedings of The Second International Workshop on
Collaborative Editing Systems. ACM, 2000.

11. Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21(7):558–565, July 1978.

12. David A. Nichols, Pavel Curtis, Michael Dixon, and
John Lamping. High-latency, low-bandwidth window-
ing in the jupiter collaboration system. In Proceedings
of the ACM 1995 Symposium on User Interface Soft-
ware and Technologies, pages 111–120. ACM, Novem-
ber 1995.

13. RELAX NG Specification. OASIS Committee Spec-
ification, http://www.oasis-open.org/committees/relax-
ng/spec-20011203.html, 2001.

14. Matthais Ressel, Doris Nitsche-Ruhland, and Rul Gun-
zenhäuser. An integrating, transformation-oriented ap-
proach to concurrency control and undo in group edi-
tors. In Proceedings of ACM Conference on Computer
Supported Cooperative Work, pages 288–297. ACM,
November 1996.

15. C. Sun. Undo any operation at any time in group edi-
tors. In Proceedings of the ACM 2000 Conference on
Computer supported cooperative work, pages 191–200.
ACM, December 2000.

16. C. Sun. Optional and responsive fine-grain locking in
internet-based collaborative systems. IEEE Transac-
tions on Parallel and Distributed Systems, page (to ap-
pear), 2002.

17. C. Sun and C.A.Ellis. Operational transformation
in real-time group editors: Issues, algorithms, and
achievements. In Proceedings of ACM Conference on
Computer Supported Cooperative Work, pages 59–68.
ACM, May 1998.

18. C. Sun and D. Chen. Consistency maintenance
in real-time collaborative graphics editing systems.
ACM Transactions on Computer-Human Interaction,
9(1):63–108, March 2002.

19. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achiev-
ing convergence, causality-preservation, and intention-
preservation in real-time cooperative editing systems.
ACM Transactions on Computer-Human Interaction,
5(1):63–108, March 1998.

20. Document Object Model Level 1 Specification. W3C
Recommendation, http://www.w3.org/TR/REC-DOM-
Level-1/, 1998.


