
Collaborative Visualization using Facet
Trees: Design and Implementation of a

Prototype System

by
Aguido Horatio Davis, BInfTech, BSc(AMS).

Submitted in partial fulfilment of the requirements of
the degree of Bachelor of Information Technology with

Honours.

School of Computing and Information Technology,
Faculty of Engineering and Information Technology,

Griffith University, Queensland.

October, 2000.

Abstract

The computational science and engineering process (build a model from real-

ity, run the model, analyze the results for prediction and insight) is increasingly

being applied to larger and more complex models by teams which are multidisci-

plinary and geographically dispersed. The traditional solution is for participants

to exchange information over the network (in long time scales) or by physically

gathering around the model, which runs at a single powerful server.

This thesis defines collaborative visualization as the ability for multiple par-

ticipants in a team to create, preprocess, run, steer, postprocess, visualize, and

analyze a model and its’ associated data sets interactively and collaboratively.

It states a set of criteria for a good collaborative solution to this problem. These

criteria are: a human time scale to all operations, collaborative, networked in-

teraction with the model, and high reuseability of existing code. Existing work

has produced solutions to meet all criteria, but not all at once.

A computation is viewed as a tree of values, where values encompass data,

operations on data, and interfaces to data. A forest of such trees, with some

leaves being facets of a single consistent value, can succinctly express both

collaborative visualization and distributed computation. Key aspects of facet

behaviour include consistency with peer facets, and transparent replacement of

existing objects in legacy code.

Two prototype implementations of these facet trees are presented. The sys-

tems replace graphical objects in Matlab with glyphs. Glyphs exhibit facet be-

haviour, and are useful for constructing collaborative interfaces using existing

Matlab code. The implementations are evaluated against an existing solution,

T.128 application sharing, on the given criteria. Sustained performance on both

sides was uneven. The sharing between instances of Matlab, however, seems to

meet the collaborative criteria better than turn-taking over a single instance.

i

Contents

1 Introduction 1
1.1 Collaborative Visualization . 1
1.2 Patterns of Collaboration . 5

1.2.1 Distributed Interfaces . 5
1.2.2 Centralized Interfaces . 9

1.3 Scope of this Thesis . 13

2 Theory: Facet Trees 14
2.1 An Example . 14
2.2 Facets . 16
2.3 Trees . 18
2.4 Backing Instances . 21
2.5 Mirrors . 24

3 Design and Implementation: Concurrent Matlab 29
3.1 Matlab as a Backing Application 30
3.2 Solution using MPI . 31

3.2.1 Conceptual Origin . 31
3.2.2 Architecture . 32
3.2.3 Events . 35
3.2.4 Communications Topology 41
3.2.5 Threads in a node . 42

3.3 Solution using RMI . 45
3.3.1 Metadata . 46
3.3.2 Facets . 48
3.3.3 Matlab Bindings . 54

4 Empirical Evaluation 58
4.1 Methodology . 58
4.2 Results . 59

5 Conclusions and Future Work 63
5.1 Conclusions . 63
5.2 Future Work . 64

ii

A Concurrent Matlab under MPI 67
A.1 The MPX library . 67
A.2 The legion daemon . 97
A.3 The stubs . 103

B Concurrent Matlab under RMI 111
B.1 Facet hierarchy . 111
B.2 Fact hierarchy . 128
B.3 Matlab bindings . 131

C Test Case 159

iii

List of Figures

2.1 Three facet trees and three mirrors 17
2.2 A plot as a branch . 18
2.3 Removing a branch. 20
2.4 A contour plot . 23

3.1 A ring of Concurrent Matlab nodes 42
3.2 Implementation of a Concurrent Matlab node 43
3.3 State transitions within the listening thread. 44
3.4 Class hierarchies . 45

4.1 Test user interface - screen shot 59

iv

Acknowledgements

I thank all the people who have given of their time, energy and advice. In partic-

ular, there are my supervisors, Dr. Junwei Lu and Professor Chengzheng Sun,

who have given support and encouragement, and caught my mistakes without

stint. Special thanks go to the denizens of the Queensland Parallel Supercom-

puting Foundation (for the place to work and the supercomputer to play with),

Andrew Lewis (for his sense of humour and bottomless well of obscure lore),

and my family (who made it all possible).

Originality

This work has not previously been submitted for a degree or diploma in any

university. To the best of my knowledge and belief, the dissertation contains no

material previously published or written by another person except where due

reference is made in the dissertation itself.

Aguido Horatio Davis

v

Chapter 1

Introduction

1.1 Collaborative Visualization

Pawletta [21] identifies three characteristics of contemporary simulation method-

ology. First, the models are computationally expensive to run. Second, the

models are qualitatively more complex. Third, all phases of the modelling pro-

cess require freedom of interaction with the work. Traditional programming

languages cannot support this interaction as well as the mathematical languages

such as Maple, Octave, Mathematica and Matlab.

These are built around the idea of interpreted steering, where user code in

an interpreted language calls routines written and optimized in a compiled lan-

guage such as C or Fortran. The decisions are made in code the users can rapidly

develop and interact with, and the rest is supplied by the modelling tool. Math-

ematical languages are optimized for the manipulation of numbers and functions

which operate on those numbers, which reside in a local workspace1. Mathe-

matical languages work well for heavy numerical computation, so extensions

to their computational throughput are useful, but none of those listed support

concurrency in computation beyond threading on a single machine. To remedy

this, there has been much work on equipping these languages with primitives
1For the languages listed, this is just a scope of execution. For some (Maple, Mathematica)

a workspace is a document.

1

for parallel [20] [32] [30] and distributed [21] processing. However, the emphasis

in this work has been the distribution of computational load across processors,

not the distribution of computations among users.

Wood et al.[31] identify another key characteristic of contemporary simula-

tion. This is that models are built, edited, used, debugged and analyzed by

teams. They argue that this is a consequence of problems requiring several sets

of expertise for insight. As these teams may be scattered geographically, per-

sonal collaboration over a single model site becomes infeasible and alternatives

must be found. Agrawal et al. [23] discuss a large-scale multidisciplinary mod-

elling effort, using distributed, heterogeneous human and computing resources.

They then present the means they used to bind these resources together into a

coherent whole.

These researchers have all attempted aspects of what we will call the col-

laborative visualization problem. Collaborative visualization starts by seeking

to enable several users to steer and visualize the results of a simulation as it

runs. Any solution to this problem must provide the infrastructure for a useful

feedback loop between the users and the model.

One way to establish this loop is to run the simulation as a batch job,

disseminate the numerical results as files to the members of the team, wait for

their analysis and feedback, and then apply that feedback to the next run of the

model, in however many hours it takes. For problems with expensive runs, where

deep analysis and team consensus before committing scarce machine resources

is a necessity, this approach is close to optimal. In times past this was the case

for most computational science and engineering (CSE), and hence we will refer

to this mode of work as the traditional solution.

With the increase in available computational resources, economy is not such

an issue. Instead, attention has turned to the process of attaining understand-

ing using the model and the data it generates. Experience indicates [21] [31][5]

[1] that engineering and scientific problems are more easily understood if the

practitioners can play with the problem. Environments supporting ad hoc anal-

2

ysis, visualization, and steering of the computation will therefore be more useful

than the traditional solution. This steering requires a feedback time compara-

ble to the informed reaction time of a human being, which in turn imposes

requirements in modelling and visualization performance.

This human time scale is not necessarily real time. Some phenomena of

interest, such as protein folding, happen over timescales of seconds. Others

such as magma flow [12] and biogeochemical cycles [6] work over timescales

of millennia. The human time scale must present these phenomena in a time

roughly corresponding to the ability of the human user to appreciate them.

After each set of simulations, postprocessing, visualization and analysis of

results and amendment of parameters or code in the model are in order. Post-

processing and visualization are supporting tasks to analysis, which benefits

from multiple interacting perspectives. This interaction suffers considerable

time and logistical penalties under the traditional solution. Editing needs to be

steered by the consensus of the team, but must in the end be performed on one

instance of the model. The traditional solution imposes a single editor. An en-

vironment which supports collaborative work in these areas, between scattered

participants, will in turn foster insight and effectiveness in problem solving.

Accordingly, the ideal characteristics of the distributed solution to the col-

laborative visualization problem are:

1. Steering feedback is obtained from the users by the system, and applied

interactively to the current computation, on a human time scale. This

enables tuning of the simulation towards areas of especial interest without

knowing where those areas are before the runs. It also allows the users

to steer around problematic or uninteresting areas. To achieve the same

ends without intervention in mid-run requires wasteful repetition.

2. The simulation runs on a human time scale. Simulations where the time

evolution is too fast for meaningful human feedback vitiate the entire

point of interactive visualization. Simulations where the time step is on

3

the order of hours or days are better suited for the traditional solution.

3. Information is extracted, postprocessed, disseminated and presented to

the users on a human time-scale. This is a corollary of criterion 1.

4. Operations occur over a networked cluster of computers. In a realistic

research environment the cluster will be heterogeneous and the network

latencies large and variable. This implies several qualities in the solution

implementation. It needs to be available on several commonly-used plat-

forms, and able to be ported to new platforms as they arise. It must be

interoperable between platforms. Local response should not be critically

dependent on network latency. Distributed algorithms should be carefully

chosen for reasonable performance under adverse network conditions, and

should not assume the transport layer is reliable2.

5. Authoring, model steering, and analysis tasks are collaborative. That

is, multiple members of the team may interact with the same instances

of things, and with each other, at the same time. Other characteristics

are then implied, depending on the task, which may be found in exist-

ing work. A small selection are: consistency, intention preservation and

causality preservation [28], group awareness and relaxed WYSIWIS3 [2],

unanticipated sharing and independent local work [31].

6. Existing modelling code is reusable. A primary advantage of mathemat-

ical languages is the legacy codebase. Quite a lot of this code is written

by working researchers and engineers, and is thus hammered together

from the raw mathematics using an undocumented evolutionary life cycle.

Hence, any tools for parallel computation and visualization that interact

with them must be immune to poor software engineering practice. Re-

quiring no change at all in other code gives such immunity. Less ideally,

minimal or rote changes in code give a degree of immunity.
2A convenient method of getting this quality is to build on top of an existing software

layer, such as the Message Passing Interface.
3What You See Is What I See. See section 1.2.1.

4

These criteria point to a solution which preserves the strengths of the tra-

ditional solution but supports research in distributed groups. The rest of this

chapter will survey various aspects of this solution, classifying them by design

pattern and effectiveness. Chapter 2 will present the concept of facet trees,

which provide a general framework for addressing criteria 1, and 4 through 6.

Chapter 3 will discuss in detail some prototype implementations of these trees as

additions to the Matlab language. Chapter 4 will evaluate the performance and

useability of these implementations, both alone and in comparison with T.128-

based application sharing technologies. Chapter 5 will present some conclusions,

and identify issues for further research in this area.

1.2 Patterns of Collaboration

Distribution of a tool may be considered in two, roughly orthogonal axes: the

interface and the computation. The computation may be distributed (MIMD4,

SPMD5 or cluster computing) or centralized (a single application instance on

a high-powered server). The interface may be distributed (each instance of

the application interacts with several users) or centralized (each instance is

owned by one user which it interacts with). Distribution on either axis may

be transparent or explicit. Transparent distribution uses the existing code,

and modifies the virtual machine in which the code executes for concurrency.

Explicit distribution is accomplished by rewriting the code with awareness that

the system architecture is concurrent and distributed.

1.2.1 Distributed Interfaces

Collaboration Transparency The International Telecommunication Union

has promulgated recommendation T.128 [10]. This specifies a standard for mul-

tipoint application sharing, supported by the other recommendations in the
4Multiple Instruction Multiple Data distributed computing
5Single Program, Multiple Data, a subset of MIMD.

5

T.120 series. Application sharing6 is the sharing of an application that does not

know it is being shared. Each user sees a copy of the application interface, and

generates input events (key strokes, mouse actions) as usual. A single instance

of the application runs on a server, and is fed a serialized, merged stream of

all the input events, which it processes as though a single user were generat-

ing them. In our classification, this approach is a distributed interface and a

centralized computation.

Here, transparent collaboration means that a shared application instance sees

the same environment, resources, and interfaces as an unshared instance. Legacy

applications can then be reused with no change at all. With this advantage come

a few weaknesses. If the application sharing system cannot rely on exposed

information about application semantics, it cannot assume that certain actions

may be safely omitted, summarized, reordered, or adjusted. It cannot then

economize by transmitting only the ones the application needs to know about.

It also cannot mix inputs from different users together - for example, the mouse

events that make up a drag and drop operation must not be interleaved with

those of another drag-and-drop. A user must therefore be designated to “hold

the floor”, working with the application while the users who do not hold the

floor observe. The need to acquire the floor limits the kinds of collaboration

possible.

Two popular application sharing systems are SunForum and NetMeeting.

These are freeware built to the T.128 standard by Sun Microsystems and Mi-

crosoft, respectively. Both work as described. The users see a pixel-level copy

of the application window, scavenged from the screen of the system which hosts

the application. This implementation ensures that each user sees exactly the

same view of the application - a property known as What You See Is What I

See (WYSIWIS). The systems occupy exclusively such resources as the cursor,

which makes independent local work infeasible. On the gripping hand, they may

be used with any application with which they can coexist, and this makes them
6Or collaborative transparency as it is called in the literature.

6

a viable alternative for implementing collaborative visualization using existing

mathematical language applications.

Mathematical Clients The client-server model can be specialized for the

case of mathematical languages. A client application sends requests to a com-

putational server, which does the heavy numerical lifting and returns results.

Typically the client offloads rendering and user interaction from the server,

which allows the two layers of software to be optimized for their specific tasks.

In the mathematical language Mathematica, a proprietary product of Wol-

fram Research, the engines are called “kernels”. Each kernel runs on a single

processor, and may respond to only one client. A client also lacks the ability to

forward requests to multiple servers. Recently, a Parallel Computing Toolkit has

become available. This contains bridging primitives for using a pool of running

Mathematica kernels, but not for coordinating interfaces. A collaborative visu-

alization solution built in this language can meet criteria 4, 2, and 1, but would

entail rewriting existing code to be aware of multiple users. This collaboration

awareness is something criteria 5 and 6 try to avoid in user code.

The TechTalk system attempts a similar approach, but built on the Matlab

mathematical language. Matlab is implemented as a single process, so the

project has added a Java client which runs within a Web browser and interacts

with an instance of Matlab running on a remote server. All the clients in a

single session use the same Matlab instance. The clients are collaboration-

aware, which lets a set of students see each others’ commands and graphical

results. The system was originally designed for teaching, where students could

work together on assignments remotely or lecturers could give demonstrations.

There is provision for “detaching” a session, which copies the state to a Matlab

session running on the client. A solution built on this technology could reach

all of the criteria except 2, human scale run times. This is because of the single

Matlab process doing the computation.

7

Visualization Clients Another specialization of the client-server model uses

a separate, collaboration-aware application to present data generated by other,

non-collaborative applications. These applications can include mathematical

languages, and so a complete solution to the collaborative visualization problem

can be built up.

SHASTRA[1] is a toolkit for building collaborative visualization applications

over the Web. Distributed simulations are conceptually organized into DSAV

(Data, Simulator, Analysis, Visualization) loops. Each software component of

these loops can reside anywhere, linked by streams of data and events. The

SHASTRA substrate, as the infrastructure is called, permits interactive, col-

laborative steering and visualization of SHASTRA-aware simulations. It uses

a distributed set of servers linked by wide or local area networks. Support for

floor and access control, group awareness and session management are integral.

This toolkit has been used to build solutions that meet all the criteria of an ideal

distributed solution to the collaborative visualization problem, except one. Ex-

isting visualization and simulation code needs substantial modification before

reuse as a SHASTRA server (criterion 6).

CSpray [19] is a data visualization layer that draws visualization objects and

information from existing sources, which require no modification. It is built from

the Spray visualization tool, which implements spray can visualization. Spray

can visualization uses that metaphor to visualize and transform a workspace

of visualization objects generated from a data source. This lets users perform

analysis and highlight interesting features. The system is extended for collabo-

ration by equipping each user with their own can(s), and enabling users to share

workspaces in an ad hoc manner. Group awareness, floor and access control,

and local independent work are supported. Unlike SHASTRA, it can draw data

from sources which are not aware of collaboration, but it can’t steer them.

8

1.2.2 Centralized Interfaces

Traditional collaboration The traditional solution uses a centralized com-

putation and a centralized interface. Visualization takes place on a specialized

front-end machine. If the modelling team wish to collaborate, they must gather

around the visualization machine and confer.

The computation may be distributed over a closely-bound cluster, or in a

single parallel processor pool. Where there is only one process interacting with

the user group, this is a centralized interface to a distributed computation.

PV3[9] is such a system. Parallel data structures and nodes are instrumented

to extract visualization data. The data converge on a visualization server. In-

strumentation is done by modifying the simulation code to incorporate calls to

PV3 libraries. This kind of technology lets solutions meet criteria 2, 1,3.

Cooperating instances It is possible to equip instances of existing applica-

tions with the ability to cooperate with other running instances of the same

application. This establishes an explicitly distributed computation, as each

user knows they own a separate instance. Each instance provides their own

centralized interface to their user. In most cases the implementation uses the

application semantics to economize on resource use.

Wood et al. [31] have applied this approach to the visualization of data

sets. They build their collaborative visualization sessions from instances of

IRIS Explorer, a conventional data visualization package7. They set several

goals that such a session must meet. It must allow users to join and depart a

session without prior notice. It must allow exchange of data between users at

different levels of granularity, so that users only share what they want or need to.

It must permit users to perform local tasks independently of the collaborative

work, and to dynamically share or localize tasks as they deem appropriate. They

meet these goals by adding data sharing and steering modules to IRIS Explorer.

These modules are explicitly emplaced by the user in the visualization network,
7IRIS Explorer streams data from sources (such as files or running models) through a

user-defined network of modules to preprocess, analyze and render it.

9

forming new data sources and sinks which extend the network to other places.

The shared resources coexist with local resources and tasks. Data may be shared

and unshared by rearranging a user’s local network.

Mathematical languages may be equipped with the additional primitives

necessary for parallel or distributed computation. The majority of this work

has been done with Matlab, the most extensible of the extant mathematical

languages, but other languages have some too. This approach lets a system

meet criteria 4, 2, and 6 straightforwardly. It also supplies the building blocks

for collaborative applications, but there are no projects which are tackling this

yet.

The Cornell MultiTask Toolbox [32] builds a set of Matlab instances running

on a processor pool into a coherent whole. There is one master and several slaves.

The master is a single front end instance of Matlab, which presents the familiar

console interface to the user. Execution of a parallel program is controlled by

the master, and performed (mostly) by the slaves. The slaves communicate with

the master and with each other through methods defined from and implemented

in the Message Passing Interface (MPI)[16]. This interface is an open standard

implemented on most parallel machines (which helps meet criterion 4). As there

is no set of formal bindings for Matlab, the toolbox is a set of wrapper functions

around MPI calls in C. Other wrapper libraries of this kind are MultiMatlab [30],

the Parallel Toolbox [20], MPITB [11] and the Parallel Computation Toolkit for

Mathematica.

The Matlab*P project [22] has produced a toolbox which uses Matlab as a

front end to parallel code. The actual numbers in the Matlab workspace are

replaced by opaque objects, which hold references to matrices distributed across

a pool of parallel processors. These processors run dedicated parallel code, not

Matlab. The parallel code is hand-written C and Fortran, some of which was

generated by the project, and the rest as wrappers around standard parallel

libraries such as ScaLAPACK. Definitions scripted in Matlab are supplied for the

parallel matrices, which then integrate seamlessly into the language. The Matlab

10

front end and the slaves communicate using the Message Passing Interface. The

net effect is a normal Matlab session with superior performance at computing

with large matrices fast.

Matpar[24] is a similar toolbox which uses the Parallel Virtual Machine

(PVM)[7] as a communications substrate to join a front end Matlab to a back

end parallel computer. Standard parallel libraries like ScaLAPACK and the

BLAS are used for numerically intensive linear algebra routines. These routines

have to be explicitly called by the user, as they are not integrated as alternate

definitions of the standard Matlab routines. It supports several parallel archi-

tectures, but only one at a time. However, because PVM supports dynamic

process starting and stopping, this one back end can be a Beowulf cluster of

lots of smaller machines.

Pawletta et al. have proposed a master/slave framework for gluing together

simulation tools for distributed work[21]. This framework has been implemented

for Matlab and several other modelling applications, which they have then used

to build heterogeneous models. The substrate is the Message Passing Interface,

and the component modelling tools may be distributed across the network. The

implementation precludes the possibility of these tools presenting independent

interfaces to different users, so it would only be useful as a back end to a

collaborative visualization solution.

Cooperative editing Collaborative editing systems such as REDUCE by

Sun et al. [28] and GROVE by Ellis and Gibbs [4] use an explicitly distributed

computation8 and a centralized interface at each instance. They aim to pro-

duce a single coherent document as the result, and thus impose a more stringent

consistency model for the application state. Under the REDUCE model, the

scattered instances of a shared document must eventually be identical (conver-

gence), operations which depend upon the results of previous operations must

happen in an order that respects this (causality) and operations must have the
8Distributed state, with operations on it, albeit with humans doing most of the operating.

11

net effect the originating users intended (intention preservation). Prototypes

exist and are in practical use[28].

Collaborative editing is needful for a solution to meet criterion 5 as regards

model amendment, and incorporation of such an editor as a component of a

solution is straightforward. A less straightforward but perhaps more fruitful

approach is to regard the mathematics and data sets behind the model as a

document, and apply these existing technologies to interaction with them (see

section 5.2).

Flexible collaboration transparency Flexible collaboration transparency

is a variant of collaboration transparency proposed by Begole et al. [2]. They

seek to improve the group aspects of collaboration by replicating the application

on each user’s machine and coordinating them externally. Each instance of the

application sees the same merged input stream, and (hopefully) holds the same

internal state. The interface is local, not broadcast, which improves network

usage considerably. Under our classification, this is a centralized interface with

a distributed computation.

As opportunities arise, components of the user interface are transparently

replaced by variants which exhibit cooperative behaviour. In scrolling window

panes, this cooperative behaviour enables users to have different views of the

same application state concurrently. This relaxed WYSIWIS is a desirable fea-

ture for group use. The panes also give users an indication of where and what

the other users are up to, visually. This group awareness is necessary for true

collaboration. A cooperative document model enables users to edit the text

contained in it concurrently, rather than waiting for the floor. This concurrent

work is another valuable trait for group use.

Their prototype system, Flexible JAMM, manages this replacement in Java

applets whenever they are serialized. The replacements are subclasses of the

original Swing components which exhibit the required behaviour. Unreplaced

components are handled as in conventional application transparency. Alto-

12

gether, the weaknesses in collaboration transparency are repaired while retaining

the main strength, immediate legacy reusability, at the cost of restricting the

domain of applications it can share. If this approach could be implemented for

mathematical languages, it could meet criteria 3, 4, 5, and 6.

1.3 Scope of this Thesis

This thesis investigates the following approach to collaborative visualization:

• Viewing ongoing computations in mathematical languages as trees of dy-

namically changing values,

• identifying values that may usefully be shared with other trees, and

• introducing such infrastructure as will enforce the guarantee that these

values will remain consistent.

The end result is a forest of what I call facet trees. The term will be explained

in chapter 2. The questions to be answered are:

• Are facet trees a useful abstraction?

• Is it feasible to generally map existing modelling code to a facet tree?

• Is it feasible to do so in an application-transparent way?

An implementation of facet trees on top of the mathematical language Mat-

lab was designed and constructed, focussing on visualization objects (graphics

and user interfaces). This thesis covers the design and implementation of this

prototype, and the ideas generated to explain and solve the challenges of this

implementation.

13

Chapter 2

Theory: Facet Trees

2.1 An Example

Consider a simulation code which models the equilibrium flow of an ideal fluid.

The simulation will run in a virtual machine (perhaps a Matlab session, or a Unix

process, or a Java runtime). Inside the main simulation are some global variables

(to store the geometry and boundary conditions), and several procedures to

operate on them, and some interface objects. The heart of the simulation is a

function from the geometry and boundary conditions to the velocity field of the

fluid. Each procedure will have a name and be implemented as operations on a

set of variables, and calls to child procedures.

To introduce collaborative visualization into this example, we must arrange

for the interface to appear before several users, and the computations to occur

in several places. Let us clarify a place to mean a thread of execution, the

resources it runs on and the environment it runs in. We may then refer to a

collection of places running a distributed computation as an ensemble.

This computation will require that certain values be visible to the users; they

will want to amend the initial and boundary conditions, and view the stream

solution. For input, they may edit expressions in text fields. These fields will

evaluate to the values wanted by the function, and must be consistent; it would

14

not do for two collaborators to set different values at the same time, or to have

the feedback appear before the amendment. The fields are likely part of a text

box, which must contain the same fields at all instances of the interface. Hence

the fields are the children of a larger object corresponding to the box. Wherever

this parent is required, so must its children be, and their children (if any) and

so on.

As with the input, so with the output. A simple way to visualize fluid flow

is with a contour plot. This plot has the value of the stream solution, which

must be consistent across the ensemble. Updates to this plot should respect

causality, if the model is to be steered usefully. The plot will exist in a set of

axes as a reference point. The axes will be sitting in a window. The plot will

have siblings: a colour bar bearing the value of the mapping and a quiver plot

of the gradient.

The plot is free to appear differently to different users. Attached to its

primary value might be the knowledge that the range is -0.3 to 2.38, the contours

are 15 units apart, the element size is three pixels by two, corresponding to five

square millimetres in real life, and so forth. This is metadata - data about the

data.

Points of similarity A class of things in the preceding example can be iden-

tified. Each of these things has a value. The value of a variable is the data it

names. The value of a procedure is the function, or relation, between the in-

puts and the outputs of that procedure. One evaluates this value by supplying

inputs. The value of a user interface is the data it is presenting or obtaining

from the user. It can be thought of as a variable which is visible to the user.

Along with the primary value, each thing also has some metadata, a mapping

between names (“scale”) and simple data (“1:28”).

Each of these things has a parent and children. The parent of a procedure

is the scope in which it exists - typically another procedure. The children of a

procedure are the variables and procedures that exist within it. The children

15

of a variable are subranges of their data, of sufficient interest to warrant names

and metadata of their own. As outlined above, the children of user interface

components are those that exist within them. The whole forms a tree. For now,

consider the root of the tree to be the virtual machine of that place.

Each of these things also exists in more than one place. That the interface

objects exist in more than one place is trivial. If there is domain decomposition,

code must be replicated at each place where there is data to be worked on. If

there is functional decomposition, variables must be kept consistent from place

to place as different pieces of code work on their values.

2.2 Facets

We have now characterized a place as having resources, a thread of execution,

and a tree of mathematical objects: variables representing numbers, functions

which act on those numbers, and graphical components which present those

numbers. We term an object which exists in more than one place a mirror. By

construction a mirror has at least one point of presence, called a facet. If this

facet transparently replaces an ordinary object at the place where it exists, the

legacy code that uses that object needs no change. This is their purpose. Two

concrete kinds of facets have been investigated, taking common roles for objects

in mathematical programming.

Runes A rune is a facet whose mirror encapsulates a value, and some infor-

mation about that value. The primary value of a rune may be:

• A data structure of varying nature, which is used in computations.

• A computation, with or without side effects, following the functional pro-

gramming concept of functions as first-class values.

• A value visible to the user, possibly susceptible to amendment.

The metadata, information about the primary value, is organized a set of keys

and values. The minimum behaviours implemented by a rune are to evaluate and

16

amend the primary value, to add and remove metadata keys, and to evaluate and

amend metadata values. If the primary value is viewed as another, mandatory

metadata item with a predefined key, these simplify down to four.

Glyphs A glyph is a rune whose value is visible to a user. If the glyph’s mirror

has more than one facet, it is visible to more than one user. This makes them

a building block for user interfaces. As with normal runes, a glyph’s value is

subject to update by user code, and by other facets. It may also be subject to

amendment by the user, which allows user input to the simulation. This change

in value may be designed to have the side effect of triggering an explicit response

by simulation code, which allows user commands.

Root

RootRoot

Visualization Glyph Glyph for adjusting parameters Rune of model values Communication across mirrors

Figure 2.1: Three facet trees and three mirrors

Figure 2.1 illustrates the relationship between trees and mirrors, using the

example of section 2.1. Three users each own a tree. The two on the left share

a mirror which represents the running simulation. All three share a mirror

which presents a contour plot; this mirror interacts with the computation via

the middle tree. The model is steered by yet another mirror, shared by the

two users on the right. It can be seen that the combination of tree (place) and

mirror uniquely identifies a facet1 It can also be seen that facets exhibit at least
1An interesting side issue is identifying the correct mirror for a newly generated facet. This

17

���
���
���
���

���
���
���
��� �����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�

�

�

�

�����
�����
�����
�����

�����
�����
�����
�������

��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Axis Labels
Contours

Filled patches of colour

Plot axes

Plot Window

To rest of application

Structural facet

Non-structural facet

Legend axes

Color scale

Shaded color bar

Figure 2.2: A plot as a branch

three separate sets of behaviour: towards other facets in their tree, towards

other objects in their workspace, and towards peer facets in their mirror. The

next sections will detail these roles.

2.3 Trees

The collection of facets at a place form a facet tree. A subtree, or branch,

comprises a coherent subset of the shared objects. Places join the ensemble

by creating the root of a new tree, which then then grows by grafting and

budding. Facets within a tree are classified as structural or non-structural. This

distinction determines whether changes in a subtree’s structure are reflected to

other trees in the forest. Structural facets define the local structure of a tree,

and their arrangement should not be shared. Figure 2.2 shows a close-up of one

branch of the fluid flow example of section2.1. The graphical window and the

axes for the colour bar and contour plot are structural, as another user might

analysis of a model’s values and their meanings would seem to require an agent with reasoning
ability. For this work, we will introduce one: the author of the model. It is assumed that
the human authors name values consistently (”Lava Temperature” here refers to the same
”Lava Temperature” there), and the problem then reduces to finding and matching names
dynamically.

18

omit one or have several. Having shared the axes with a contour plot in it,

the facets corresponding to lines, filled regions, and labels are non-structural.

When they are created or destroyed on one plot, that change must be shared

with other instances of the plot automatically.

Budding is the replacement of an object in the local workspace with a facet,

which becomes a child of an existing facet in the tree. If the bud is not a

structural facet, each facet in the parent’s mirror grows a facet of the bud as

well, so that branches remain consistent in structure.

Grafting is the cloning of a branch from another tree. This clone, called

a cutting, is attached to an existing facet of the local tree, and the mirrors

involved then are extended by another facet each. This is how users can share

things with each other - one creates the original, single-facet object, and others

graft it on to their trees at an appropriate location. Two implementations of

the cloning are possible.

1. Clone the base of the branch. Onto this base, graft each of the required

children. In this way, some of the cutting is available immediately. Bal-

ancing this, the original branch needs to be locked against change during

the transmission to prevent inconsistencies.

2. Create the cutting of the entire branch, transmit it to the graft site, and

unpack it in one operation. This snapshot cannot be affected by changes

at the origin, but takes more time to reconstruct at the new tree.

If backing instances are separate, the newly cloned facets must make arrange-

ments to adopt or create them. Further discussion on this point is given in

section 2.4.

Facet trees shrink a branch at a time. When a facet in the tree is deleted, any

children cease to have a meaningful context and are deleted also. An example

is a variable after the procedure that uses it has ceased - it has no purpose, and

neither does anything it has as children, and so on. Another example is shown

in figure 2.3. When the simulation code is told to stop showing a particular

19

Contour plot

Subplot

Legend

Deleted window

a)
b)

Application

Control Panel

Application

Control panel

SimulatorSimulator

Solution window

Figure 2.3: Removing a branch.

solution, it just closes that window. The rest of the tree remains intact and

running. Deleting the root of the tree implies removing the entire tree from the

forest, or removing a place from the ensemble. This is always initiated at the

place (or user) which wishes to leave.

Runes Runes whose values are simple data tend to have few children (most

ranges are not named) but several siblings (for example the Hx, Hy and Hz

components of a magnetic field). Runes whose values are executable have back-

ing instances of code, and these might have a deep hierarchy of function, sub-

subfunction, sub-sub-subfunctions, and attendant variables. This profusion of

instances will not be reflected in the facet tree, because most local code and

variables will not be shared. Hence, branches of a facet tree made of runes tend

to be shallow and flat.

Glyphs Glyphs are children of other glyphs, or of the runes which control

them. Individual user interface components require a context of other compo-

nents to convey information to the user (a lone text field with 42 in it could

mean almost anything) and so they lead to fairly deep instance trees (3 or more

levels). All levels of this hierarchy are subject to sharing, so these branches of

20

facet trees are also deep.

Roots The root of a facet tree has a number of unique attributes and roles.

The backing instance for this root is the language runtime, because that is the

parent of all the things generated by the user from code in that language, and

it controls the screen, which is the parent of all the graphics. The runtime will

have a set of global properties, and these will be reflected as metadata. It will

have a primary value, which is the location of the place within the ensemble2.

The root is therefore a structural glyph. The root is never a child of another

facet.

The root mirror is named for the ensemble it underlies. To add a new place

to the ensemble, a new root facet is created with that mirror name and merged

in to the tree. The new peer is issued a location identifier for that place by

one of the existing peers, which it uses to identify itself to the rest of the forest.

These identifiers are small positive integers, which impose trivial overhead when

labelling messages or elements of state vectors, and possess convenient properties

and algorithms for generation and iteration. Several of the algorithms presented

in section 3.3 use these properties to efficiently query or augment the set of peers

in a mirror or trees in a facet forest.

The root of a facet tree provides a bootstrap naming service, which its

descendants and peers use to acquire references to facets of other mirrors. Each

local root knows the identifiers of its descendants. When asked for a reference

to a facet of a specified mirror, the root fills the request with a local reference

if it can. If it cannot, it delegates the request to the appropriate peer.

2.4 Backing Instances

A facet maintains exactly the same interfaces and visible state as the object

it replaces. We will call a facet’s implementation for this the backing instance.

A facet may be its own backing instance. This is applicable where the original
2This value is immutable, and is held within the rune rather than the backing instance.

21

object may be superclassed to exhibit facet behaviour. If the exact interfaces are

encapsulated where the facet implementor cannot get at them, or the original

object may not be removed, or equivalent behaviour is impossible to reproduce,

the original object must become the backing instance for the facet. Messages to

and from the backing instance must be intercepted and modified by the facet.

The backing application must expose enough information to permit this.

The set of objects in the local workspace forms a tree of potential backing

instances, the instance tree. The same terminology may be applied to the in-

stance tree as to the facet tree: parents and children, structural nodes, budding

and grafting of instances. If the objects mostly form a flat collection, they can

be all considered direct children of the root object, the application. A subset

(possibly empty) of the instance tree will be replaced/augmented by members

of the facet tree. Some of these replacements will be explicitly required by

the user, some will be implicitly required by the user’s code, and some will be

implicitly required by the facet’s code in order to create a coherent facet tree.

Explicit replacement occurs when the user creates the backing instance to

be shared, indicating by tagging with a mirror name or by other means that it

is to be augmented. If the parent of the instance is itself shared and there is no

existing mirror as requested, growing a bud on the facet tree and supplying it

with details of the binding at bud time is straightforward. If the parent is shared

and there is an existing mirror by that name, then an entire branch must be

grafted on. The backing instance of the root of the branch needs to be rebound

to the newly imported facet, or replaced with a freshly created instance (which

then needs grafting to the instance tree). Similarly, descendant facets within the

branch must appropriate or replace backing instances of their own. A familiar

example would be the creation of a two-dimensional contour plot, named and

shared, such as the one in figure 2.4. This forms part of the branch illustrated

in figure 2.2.

The entire hierarchy of window, axes, labels, colour patches, and lines would

be created most efficiently in one hit, and then bound to the facet tree. At this

22

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35 40 45 50 55 60

50

100

150

200

250

300

350

Figure 2.4: A contour plot

point, one of the named subplots might be discovered as a separate mirror else-

where in the ensemble, and a complete branch arrive from it for grafting. If the

backing instance for this branch consists of a blank, named pane of the window

for it to occupy, the graft must be able to reconstruct backing instances for itself.

If the subplot was created completely, from local data, the backing instances

can be co-opted. This may or may not be more efficient than destroying the

existing backing instances and reconstructing them from scratch. Additional

issues exist where the interaction between the adopting thread (which runs the

code inside the dormant grafted objects) and the backing application thread(s)

is asynchronous. Enquiries to probe the instance tree may manage to deadlock.

Implicit replacement occurs when the user’s code creates a nonstructural

backing instance descended from a shared structural backing instance. If anony-

mous, this operation is always a bud, and the only complication comes from

recursively budding new anonymous mirrors to deal with any prefabricated de-

scendants in the instance tree.

Implicit binding to a freshly-created facet occurs when an explicitly shared

backing instance has been created atop an existing but unshared instance. For

the facet tree to cohere, the parent instance needs to be part of the tree. This

23

is accomplished by creating a facet to bind the parent instance, and recursing

towards the instance root (the application) until a bound ancestor instance is

reached. This traversal does eventually terminate provided the instance tree

is actually a tree. Consideration needs to be given to the case where some of

the newly bound instance(s) are structural. A consistent policy towards their

unshared, nonstructural descendant is required. Sharing all these collateral

branches may result in the entire instance tree being shared. Ignoring them

might leave a necessary supporting value behind.

Runes The backing instance of a normal rune whose value is ordinary data, is

a named variable in the scope of its parent rune. Binding consists of obtaining

a reference and a copy of any properties.

The backing instance of a rune whose value is executable code is the code.

Most mathematical languages are imperative and do not support direct first-

class values, so running instances of the code are not explicitly named. The

question then is, to what do you bind the rune?

The deletion of a rune from a tree might mean computation is no longer

shared, so the corresponding backing instance is left intact, or it might be

prompted by the destruction of that instance.

Glyphs Most mathematical languages possess a toolkit for general graphics,

which supplies primitives like windows, axes, lines, menus, text labels, and

more specialized things like patch objects and surfaces. These are the backing

instances of a glyph. If the graphical components are presented in discrete

windows, these windows are structural, so each user may have different things

in different windows.

2.5 Mirrors

All the members of an ensemble share a common namespace, which requires

a distributed, deterministic method for naming places and mirrors. All facets

24

in that ensemble with the same name are peers belonging to the same mirror.

These peers communicate amongst themselves to maintain a consistent state

and implement methods that are distributed in effect. Each peer may be doing

something different, might have different local versions of the state, and need

to be treated and identified individually. In contrast, the individual replicas of

a replicated object are copies with no individual identity. They may be cached,

relocated, or garbage collected as convenient for their distributed algorithms.

Both kinds of object have state and behaviour, and algorithms in existing work

to synchronize these are often exactly applicable.

A mirror starts with a single facet, which is a bud in a tree. Usually authors

name their variables, procedures, and graphical interfaces. The corresponding

structural facets which acquire these backing instances then have a meaningful

mirror name. Non-structural instances are often generated on the fly, so not

named explicitly. Such anonymous mirrors require a name which is unique over

the ensemble for as long as possible, and acquire one by asking the root of their

tree (see section 2.3).

However it is named, this mirror grows by merging with other mirrors of the

same identifier. To do this, a subset of facets in each mirror acquire references

to the facets of the other. In the present work, each facet holds references to

the entire set of peers, and a check for existing mirrors is made as each mirror

is created, so only an algorithm for the case of merging one facet into a set

of facets is needed. Such an algorithm will be given in section 3.3. A mirror

shrinks when one of the peers is pruned from its tree. This fact is broadcast to

those peers it knows about (which in the present work is all of them). 3

The two roles of a mirror are generalizations of the roles of an object: en-

capsulate some state, and operate on that state, possibly interacting with other

objects to do so. Our two types of facets go about this in different ways.
3Maintaining a distributed set of peers by broadcasting updates to all of them, is an

approach that may not scale well with increasing mirror size. For the current prototype, this
is acceptable. Future work may limit each facet to a horizon.

25

Runes Runes make some of their state available to other local objects, notably

their values. A mirror of runes whose values are data implements a distributed

data structure. When this data structure is used in computations which must

have correct inputs, and whose results should not be lost or dropped, the state

should act as if reads and writes from all facets occur to one copy in a se-

rialized order. This sequential consistency model [13] carries with it certain

expenses. Some operations must be delayed until the operations ordered “be-

fore” them have been executed, or some of the state must be locked so that only

one reader or writer is active. If the rune stream is passed as a parameter in

a function call, stream = gauss seidel(stream, boundaries), then instead

of considering the internal queries and updates posed to stream by the func-

tion gauss seidel, we may consider this as one update4. At this time only

relatively coarse functional decomposition of mathematical code seems feasible,

so the locking overhead posed by such Lamport consistency will be negligible

compared to the time spent computing with such “updates”.

Runes operate upon their values (just as objects do when their methods are

called). If those values are ordinary data, the operations may be implemented

as a read followed by an update. If those values are meant to be evaluated by

running them, some operations will involve execution of code in various places

across the mirror. A mirror of runes whose values are actions then represents a

MIMD parallel computation, each place supplying a separate set of resources,

data, and possibly code. In this case, the backing instance will usually be an

existing software component. The text of this code would be a metadata item,

and any shared data structures referenced by it would be children of this rune.

Synchronization would be done by blocking within these runes whilst distributed

communication occurs. Evaluation of the value would either return the program

text, or the result of running it, and such evaluations would have to be flagged

as “execute if possible” or “evaluate only”.
4In most mathematical code, the primary value is more likely to be updated and evaluated

during computation than the metadata.

26

Glyphs Glyphs operate in a different environment than other runes. Their

state forms inputs to processes, such as humans, which can trade transiently

incorrect inputs against minimal update latency. Glyphs therefore allow for up-

date of state to be local, and then to be brought into consistency as updates from

elsewhere arrive. This optimistic concurrency model requires algorithms such

as undo/transform-do/transform-redo[25], which roll back intervening updates,

insert the operation, and roll forward the state again. For effective application

of these algorithms, update operations must be fine-grained, reversible, and

cacheable. For mathematical languages, updates tend to be total instead of

incremental. Leaving no trace of the previous value rules out reversing them

without a time-stamped history of values in storage, but that is expensive.

A callback is an item of metadata that is executable. When a certain event

matching the callback key occurs5, the callback value is executed. Glyphs may

take user commands, and so need to support this additional operation on their

metadata. Three cases may be distinguished.

• The callback is executed classically, with the exact behaviour of an un-

shared object. The facet executes a local version of the callback value. The

other facets of the mirror are not notified of the callback event. This is

to enable local, independent interaction of the user with their application,

such as zooming in on or rotating a plot.

• The callback is executed collaboratively by all the facets in the mirror.

The net effect is for the callback to execute once, at one facet across the

mirror. Factors to be considered in choosing the place of execution may

include: load balancing, migration latency, availability of requisite data

and code. A good default heuristic is to choose the facet which most

recently set the callback value, as being the likeliest to have a suitable

context for execution. This is a distributed version of a classical callback,

but exploiting the multiple places available.
5Typical events for a GUI are mouse clicks of several varieties, mouse drags and keystrokes.

27

• The callback executes globally, across all the facets in the mirror. The

originating facet executes a callback intended to have a distributed effect,

and notifies the rest of the mirror, which execute their own. The set of

executing callbacks forms a MIMD computation. This requires equipping

each facet with a callback value explicitly designed for concurrent execu-

tion. This callback value should be generated within the mirror from the

application’s supplied callback if the application code is to be kept un-

aware of distribution issues. How to do so generally is beyond the scope

of this thesis.

28

Chapter 3

Design and Implementation:

Concurrent Matlab

There are two ways to use facet trees as a framework for structuring collaborative

visualization. If the majority of the functionality of the child runes rests within

their backing instances, implementation can be simplified to a heavyweight root

attached to the backing application, talking directly to backing instances inside

the application. The rest of the framework then becomes a strictly conceptual

aid to design, and is never instantiated. This approach was taken for the first

prototype, detailed in section 3.2.

If the backing application supports an interface to a full programming lan-

guage runtime, such as the Java Virtual Machine, and a lot of the functionality

needs to be layered on top of the backing instances, then implementing facet

trees literally, produces better results. No additional conceptual mapping from

the system design to the logical architecture is needed. This approach was

followed for the Java prototype, and is detailed in section 3.3.

29

3.1 Matlab as a Backing Application

Matlab is a mathematical language, a collateral descendant of FORTRAN. It

has one type, a self-describing array of values. The values may be complex

numbers, characters, structures with named fields, or other arrays. Variables

are polymorphic. Object classes are created by naming a structure with specified

fields and supplying definitions for the standard operators on instances of that

structure.

The core interpreter, numerical, simulation and graphics libraries are pro-

prietary to the authors, The Mathworks. The rest of the system is composed

of interpreted ASCII script files, called M-files for their suffix. A collection of

related M-files is called a toolbox. A core set of toolboxes is distributed with

Matlab. There are many hundreds of commercial and freeware toolboxes written

by working researchers and engineers in most fields of technical computing.

These toolboxes, which often define new types and methods as well as im-

plement a large amount of applied mathematics, are seamless extensions of

Matlab’s capabilities. The built-in classes (double precision complex number,

characters, and other primitives) may be redefined or overridden in the same

way as any other. If compiled code is needed, there are standard interfaces

for Fortran and C++, which let modules be used identically to M-files. The

existing code base is one of Matlab’s strengths.

The other strength of Matlab is the interactive environment. Here users may

play with large and complex data sets, using the various toolboxes in an ad hoc

manner to gain insight into the data and algorithms. This encourages extremely

rapid prototyping (a standard method is to record an interactive session to a

log, or “diary”, and then edit the diary into the final source code).

Matlab’s graphical capability is through opaque objects sequestered within

the core runtime. Manipulation of these is through floating-point handles, so

the system is referred to as Handle Graphics. Each class of Handle Graphics

object has a set of properties, a mapping from keys to values. These properties

30

may be read-only or settable. Read-only properties give information on the ob-

ject’s implementation state (current cursor location, screen colour depth). The

settable properties specify displayed data, field values, colour maps, positions,

names, ages, and all the other things that determine what the object does and

looks like. One queries these properties with the get() function, and updates

them with the set() function. The system also updates them autonomously.

Each HG class has a specific constructor (e.g. figure, line, patch, menu).

All classes share a common destructor, delete.

HG objects make good backing instances for glyphs, as metadata maps di-

rectly from the properties of the object, and a primary value can be identified

for user interface components. Through Matlab’s object system, enough infor-

mation is exposed to use workspace variables as backing instances for runes.

Most of the requisite communications primitives for facets are lacking, preclud-

ing an entirely native Matlab implementation, but as mentioned there are many

programming interfaces for extensibility. Toolboxes for TCP/IP, socket I/O,

and PVM operations exist.

With these traits, it was decided to use Matlab as a backing application

for a facet tree implementation. Initially the compiled C API was used, linked

with the Message Passing Interface. Presently the limitations of that approach

became apparent (mostly single-threadedness) and Java was used.

3.2 Solution using MPI

3.2.1 Conceptual Origin

The resources available to the author were an IBM SP2 equipped with Mat-

lab, and source for a pedagogical Matlab toolbox called ACVEM[14]. Ways

were sought to use parallel and distributed computation in this toolbox. Initial

work was in developing conventional parallel codes as solvers for the aspects of

Maxwell’s Equations used. In this work, it became apparent that the process

had bottlenecks both in creating the model and solving the model. It also ap-

31

peared that the only way to ease these bottlenecks was to hand-code parallel

and distributed extensions to Matlab in C and rearrange the Matlab code to

allow for them.

A new approach was inspired by a technical report by Begole et al [2], which

is reviewed in section1.2.2. This report describes the implementation of collabo-

rative environments by leaving individual instances of the application unaltered,

and introducing awareness (including collaboration-aware behaviour) into the

user interface components and document models. This required less exposed

information than would intuitively be needed. This is because the implementa-

tion language, Java, has strong support for interfaces. Objects can be subclassed

and interfaces reimplemented to exhibit the required behaviour. These are then

exchanged transparently without disrupting the running application.

It was then open to introduce the same kind of collaboration awareness

into Matlab’s user interface components, but by a different method. Handle

Graphics is built into the core of the Matlab runtime, and the objects are

not amenable to reimplementation. However, the entire relevant state of a

HG object is exposed as a set of key/value pairs (the properties). Judicious

interception of these values, by substituting for the commands which use them,

would produce the requisite effects, if each instance was rendered by a separate

Matlab engine. Unlike flexible collaboration transparency in Java applets, the

work of computation would be done at one instance only, and the other instances

sychronized by generated Matlab commands.

Concurrent Matlab over MPI is a toolbox that implements glyphs under

Matlab. It provides the building blocks for collaborative interfaces to conven-

tional computations: the computational back end is supplied by conventional

Matlab code and compiled parallel executables, not runes. This toolbox is a

set of C MEX-files for Matlab 5.2, running on an IBM SP2 and connected by

daemons using the Message Passing Interface [16].

3.2.2 Architecture

32

Daemons The ensemble is a set of daemons written in C. A daemon is a

program which lurks in the background and does not directly interact with

users. The term arises from Unix, where system daemons provide services like

print queues, network operations, and remote file systems. In this case, the

daemons each run a Matlab Engine, an instance of Matlab whose standard

input and output are under the control of the daemon. The engine interacts

with the user and the daemon interacts with other daemons to coordinate the

ensembles. These daemons are facets of a root mirror.

The basic reason behind this is the single-threadedness of the Matlab in-

terpreter. It is not re-entrant. An attempt to feed it commands from another

thread will wedge the application unless the interpreter is actually idle, a con-

dition that requires ad-hoc methods to detect. There are auxilliary threads to

parse events for graphical objects, but event handling involves the execution of

callbacks, which are queued at the interpreter thread with all other computa-

tion. Hence, we will refer to the interpreter thread as the Matlab thread.

An alternative method of implementation is to use the MEX application

programming interface to Matlab, which enables you to wrap a chunk of C

code in a shared library which Matlab will then run as though it were a normal

Matlab script. The incorporation of code using the Message Passing Interface to

send and receive messages to another similarly equipped Matlab session works

quite well. The problem is that this code is executed by the Matlab thread, and

while it is engaged in blocking communications it is not engaged in servicing

user events, degrading local response to an markedly level.

The POSIX thread library also works within MEX libraries, and appeared

to offer a solution. A thread could be spawned from the Matlab thread, and

listen for MPI communications, then use the existing mexCallMATLAB function

to issue the appropriate commands as they arrive. This function’s need to call

the interpreter from another thread, and the issues involved using Matlab’s

thread-unsafe matrix primitives were prohibitive.

If asynchronous or ready-send semantics are used instead, the problem be-

33

comes one of remote response. As events arrive, Matlab commands may need

to be issued in a timely fashion. These commands must be issued from code

running in the Matlab thread, and hence this code must arrange to check for

queued remote events on a regular basis. Either the Matlab thread must regu-

larly enter the communications code at the behest of user code (which requires

insertion of calls within user code) or it must stay within the communications

code with occasional excursions to the interpreter. This latter involves substi-

tuting for the Matlab shell, a non-trivial task given its functionality, and feeding

the resulting command stream to the interpreter. Local graphical events can

be handled by regular calls to the Matlab command drawnow, which flushes

event queues, but substantial queued callbacks may lead to starvation of the

communications code.

The solution that was used is to run the daemon and the Matlab session as

separate processes, and link them with Unix pipes using the supplied Engine

API. This API implements a blocking master/slave relationship with an engine.

The master blocks while the slave computes and sends a response back. In

between times, the slave is free to respond to user input or other events. There

is one daemon and engine per user (or at least per user interface), which may be

running anywhere. The usual configuration is for each instance to be running on

a separate processor of the SP2, the MPI communication to be routed through

the high-performance switch, and the graphical windows to be routed through

X11.

The glyphs are entries in a table in the root facet, which point to Han-

dle Graphics objects. The root facet (the daemon) uses its backing instance

(the Engine) to manipulate and render them as appropriate. The HG methods

have been replaced with stub MEX-files placed in strategic places on the Matlab

command path. They are called instead of the originals; they call the original

methods, and then write an mxRequest containing sufficient information to du-

plicate the call, to a well-known pipe, where the tap thread of the local daemon

will read it and it will be echoed to the rest of the ring.

34

3.2.3 Events

For simplicity in this first implementation, all facets were made non-structural,

including the root. So each instance of the interface needs to exhibit the same

appearance and behaviour. When an object is created at one instance, it needs

to appear at the other instances. When an object is destroyed at one instance, it

needs to disappear at the other instances. When an object changes properties,

those properties must change at the other instances. When an event occurs to

an object (mouse click, key stroke) it must occur to the other instances. When

a piece of user code queries the properties of a HG object, it must get the same

value from each instance.

These five requests - create, destroy, set, callback, and get - are the five

method calls that a Concurrent Matlab node must exchange information with

other nodes about. The minimum information to reconstruct a request is a

Matlab array, a descriptive string, a handle designating the relevant object, and

another object designating the relevant object’s parent. These are implemented

as fields of the mxRequest C data type, defined:

typedef struct {

int kind; /* What kind of request this is */

int status; /* Further detail on the above */

char * words; /* Associated name */

mxArray * array; /* Associated Matlab value */

mxArray * object; /* Associated Matlab handles (at root) */

double parent; /* Parent of object (at root) */

int origin; /* Which place originated this request */

int location; /* Which place the request is in now */

int references; /* Reference count */

} mxRequest;

This datatype is encapsulated in the mpx library, which implements the ab-

stract data types for this system and most of the communication and reflection

35

logic.

Construction Glyphs are created with calls to the customized constructors,

Figure, Axes, Uicontrol, Uicontextmenu, Uimenu, Line, Patch, Surface,

Light, and Image. These are implemented as MEX-files linked with C thread-

ing, MPI and I/O libraries, and collected into a toolbox directory. Replacement

requires an explicit user request. If the original constructors are called, the

resulting HG objects will never be shared.

At the time, no method of redefining built-in primitives was apparent, so

the replacements had sentence-case versions of the original constructor names.

A similar approach is taken with regard to the other methods on a HG object,

replacing with a custom version with a very close name and relying on user

porting. This is not transparent, but does make porting code to Concurrent

Matlab over MPI (in theory) a trivial search-and-replace operation.

The normal case is that a CM constructor is called with arguments that

specify various properties of the resulting HG object. The arguments are passed

unchanged to the original constructor, which parses them and produces the req-

uisite object. Two of the constructors (figure, axes) may also be called to

designate the current window or plot, and may do both if there are no existing

plots or axes to so designate. The handle of the backing instance is extracted

from the return values of the original constructor, and the handle of the backing

instance’s parent from properties of that instance. Changes to default properties

for the instance are extracted by parsing the arguments to the constructor. The

resulting list is packaged as the fields of a Matlab structure array. All this infor-

mation is marshalled into a mxRequest. A well-known pipe (/tmp/legion.pipe)

is then opened and the mxRequest written into it. At the other end of the pipe

a legion daemon is listening. The mxRequest passes through some internal

queues, as described in section 3.2.5, and is then broadcast to the other dae-

mons as described in section 3.2.4. At each place, the appropriate thread of

the daemon unmarshals the mxRequest into the constructor name, the parent

36

backing instance, and the properties it is to have.

At this point adjustments must be made for the local context. HG handles

are generated in a nondeterministic way, which means that each facet’s backing

instance has a different handle. The name of a mirror is taken from the handle

of the first facet to be created, which is always at place 0. Translation between

mirror names and local handles needs to be made before these are used to

designate the parent instance and any other metadata that points to objects.

For this purpose each daemon keeps the state of the local facet and instance

trees in a dictionary, defined as:

typedef struct _object {

double handle; /* What this instance of Matlab calls it */

double rootID; /* What the root calls it */

double rootParent; /* What the root calls its parent */

char * callbacks[mxMAXCBACKS]; /* Collection of callbacks */

int status; /* What are we doing to it? */

struct _object * next; /* Away from head of list */

struct _object * previous; /* Towards head of list */

} mxObject;

typedef struct {

char * name; /* What it’s called */

mxObject * start; /* Head of the list */

int count; /* Population of the list */

pthread_mutex_t * gate; /* Gatekeeper mutex */

} mxDictionary;

The constructor is then called, and the handle of the resulting backing

instance recorded in the dictionary. A set of metadata is created from the

mxRequest, plus a set of callbacks which point to the system. This set is then

loaded into the backing instance(s). The newly created objects are then entered

37

into the mxDictionary.

The second common case occurs when a Handle Graphics constructor is

called to create a child of a backing instance that doesn’t actually exist yet.

For example, a call to create a line requires a set of axes for it to exist in,

and will create one if a suitable parent does not exist. The axes will require a

figure (window) to exist in, and ones will be created if suitable grandparents

do not exist. The custom constructor stub which called the original cannot tell

whether this implicit creation has occurred, but needs to ensure that the relevant

facets exist. Therefore it always extracts the parent 1 from the properties of

the new child instance, and then forwards creation mxRequests for them. The

daemon consults its dictionary and silently discards creation requests for existing

facets. To avoid this issue at the other facets, the creation requests are sent in

descending order - grandparent, then parent, then child.

Destruction Glyphs are destroyed by a call to the Delete command, which

takes an array of handles to dispose of. As with constructors, the first thing it

does is feed the input parameters to the corresponding local command, delete,

which kills off the relevant backing instances. Since this command is only ever

issued from user code, and user code only ever runs at location 0, the handles

passed in are the mirror identifiers and require no adjustment. If the execution

throws no exceptions, then an mxRequest with the handles in it is created and

written to /tmp/legion.pipe.

At each node after broadcast, the mirror handles are translated into local

handles, and the new list is passed to a local delete command, which disposes

of the local backing instances. The corresponding entry in the mxDictionary is

then removed.

Deletion follows the normal instance tree semantics, which means if a figure

is deleted, any axes within that figure go as well. If a set of axes is deleted,

so are any child graphics objects. Passing a deletion request for the root of
1And grandparent, if necessary.

38

each branch suffices, as Matlab implements this behaviour automagically. The

dictionary at each tree needs to have the entries for the implicitly unbound

facets purged; this is done by checking the parent of each entry.

The screen is considered to have handle 0.0. A request to delete it is a signal

to terminate the ensemble, or magic bullet, usually fired by the user at location

0. As the bullet is broadcast to each facet of the root, it proceeds through all

the threads in that facet. As the bullet passes through each thread, the thread

must clean up any pending input, send the bullet on, then shut down. The last

thread in the facet sends it to the next place on the MPI intracommunicator.

The last facet to receive the magic bullet is the origin of it, and can then shut

down itself.

Properties Most glyph metadata is held in Matlab as the Handle Graphics

properties of the backing instances. It is queried by user code using the get

command, or, under Concurrent Matlab, Get. As soon as a change is made

in these properties, the change is made across the mirror. This eager update

makes queries strictly local. Therefore, Get is implemented as a simple call to

get.

Metadata is changed using set, or under Concurrent Matlab, Set. Normally

Set takes as arguments an array of graphics handles and a list of keys and

values as arguments. These arguments are fed to the normal set command.

Assuming the local update is successful, the arguments are parsed into a handle

and a Matlab structure array containing the key/value pairs. This array and

handle are packed into an mxRequest, which is written to /tmp/legion.pipe

for broadcast. As each facet receives the mxRequest, it extracts the handles

and looks up the relevant facets in the object dictionary. Using the information

in this dictionary, the backing instances are found and the supplied metadata

values adjusted. A call to set is issued to update the backing instances.

Most metadata values for HG objects are character strings, numeric arrays,

or handles pointing to other mirrors. For example, a set of axes travels with a

39

set of text labels corresponding to the tick marks, which are pointed to by the

XTickLabel and YTickLabel properties of the axes. Before reflection at places

other than location 0, any such handles need to be translated by looking up the

local facets and finding their backing instances.

Callbacks A callback in Matlab is a command string designated for execution

at the occurrence of a specific event to a specific HG object. In regular Matlab

they are stored as properties of the object in question. When a user interface

object (menus, buttons, sliderbars, text fields, and so on) has its primary value

changed, Matlab classes this as an event and fires the Callback callback. When

figures are resized, Matlab retrieves and executes the ResizeFcn callback. In

all cases, all the other properties of the HG object in question are also updated.

In Concurrent Matlab, callbacks are stored in the mxDictionary of the root

facet which originally created the object 2. The relevant properties of the back-

ing instances are occupied by a string containing the Callback command. This

command takes parameters supplied when the event is triggered, specifying the

facet which is involved and the callback key. The latter parameter is imple-

mented as an integer from the set of constants defined in mpx.h, for simplicity

of processing.

When a callback is fired, Callback takes the handle and key, extracts the

primary value from the backing instance using the handle, puts these in an

mxRequest, and writes it to /tmp/legion.pipe for broadcast. For group aware-

ness, as each places sees the mxRequest it extracts the primary value and updates

the relevant facet as for Set.

Callbacks execute collaboratively (see section 2.5). In this implementation,

they execute at the location where the mirror was created. As currently con-

figured, all mirrors are created at location 0, so that is where all the compu-

tational work triggered by the GUI occurs. When the root at that location

sees an mxRequest bearing a callback it retrieves the real callback string from
2Most of the time this is location 0

40

that facet’s entry in the dictionary, and issues it as a command to Matlab. For

simplicity the callback archive is implemented as an array of string arrays.

3.2.4 Communications Topology

The designed function of the communications topology is distributed nonblock-

ing broadcast. Each place needs to have the same communications load, each

place needs to see all mxRequests, and the thing needs to scale simply. Non-

blocking broadcast is specified to avoid deadlock without the overhead of detec-

tion and avoidance algorithms, and to minimize synchronization requirements

between daemons.

The Message Passing Interface [16] broadcast functions requires synchro-

nization of the entire communicator, so it was decided to hand-code nonblock-

ing broadcast using a ring. All daemons are members of a one-dimensional

Cartesian intracommunicator, established at startup. For convenience one place

(with rank 0 on the communicator) is elected as the root location, and presents

a simple command prompt; commands entered here are executed by the local

Engine. MPI does not allow communicator membership to change, which fixes

the places in the ensemble at the start. This characteristic is a drawback which

is addressed by the MPI 2.0 standard [17].

Figure 3.1 shows the communications topology. As mxRequests are gener-

ated, they are passed from the outbound queue of one daemon to the inbound

queue of its neighbour using nonblocking point-to-point MPI calls. The FIFO

nature of these queues gives rise to two useful properties. A set of mxRequests

raised in some total order T at a given place pass through any other place in that

same order. A set of mxRequests raised at the same actual time at places ar-

ranged around the ring in some order O pass through any other place in the ring

in a cyclic permutation of O. That is, if requests are raised in places 1358, one

place may see them in the order 8135, another may see them in the order 3581.

If mxRequests are commutative, the results converge. If none of the requests

conflict (same mirror, same metadata, different facets) then they also converge.

41

� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

Daemon 0

Daemon 4

Daemon 3

Daemon 2

Daemon 1MPI_COMM_WORLD

Unix Pipes

Matlab Engine

Figure 3.1: A ring of Concurrent Matlab nodes

In general, however, conflicting commands do not give rise to convergence (see

section 4.2).

3.2.5 Threads in a node

Figure 3.2 shows the internal structure at a place. The daemon is split into four

threads, named keyboard, tap, engine and messenger. Linking these four

threads are two FIFO queues of mxRequests, the inbound and outbound. The

arrangement is pictured in figure 3.2.

Message passing thread The messenger thread deals with the MPI in-

tracommunicator. It uses the LAM/MPI library [3] because this library is

portable and supports heterogeneous clusters of hardware. On the down side,

it is definitively not thread-safe. At process startup, this thread sets up the

MPI COMM WORLD communicator for use, opens a Matlab Engine, and spawns

the other threads. It then operates as a finite state machine, starting in state

WORKING and looping through two tasks on each transition:

• Receive one mxRequest from the right neighbour in the ring and place it

42

keyboard

engine

pipe

messenger

To right neighbour
From left neighbour

Matlab Engine

Stub

Figure 3.2: Implementation of a Concurrent Matlab node

on the inbound queue. Discard requests that originated here (they have

circled the ring). If in LISTENING state and the request is a magic bullet,

change to STOPPED. Otherwise, stay in the current state.

• Remove one mxRequest from the outbound queue and send it to the left

neighbour in the ring. If the request is a magic bullet and it came from

here, change to LISTENING. If the request is a magic bullet from elsewhere,

change to STOPPED. Otherwise, stay in the current state.

The transition diagram is shown in figure 3.3.

Keyboard thread The keyboard thread is responsible for managing stan-

dard input. One user, at location 0, has a prompt presented to them. Lines

from this prompt are parsed by a simple interpreter. The command “quit”

fires a magic bullet, empty commands are ignored, and all other commands are

passed to the backing Matlab instance verbatim. Commands from this source

are wrapped in an mxRequest, and placed on the inbound queue.

Engine thread The engine thread is passed a pointer to an Matlab Engine

when it is spawned, and is thereafter responsible for managing it. While there

43

LISTENING

STOPPED

WORKING

See magic bullet return to here

See magic bullet from here

See magic bullet from elsewhere

Read a normal request

Read a normal request

Figure 3.3: State transitions within the listening thread.

are mxRequests in the inbound queue, it removes one at a time and passes it to

a library function which translates it into Engine commands and extracts some

Matlab output. If this thread is running at location 0, and the mxRequest origi-

nated at standard input, the results from Matlab are printed to standard output

and the request is silently destroyed. If this request is a magic bullet, this thread

signals the other spawned threads to cease. Otherwise, the mxRequest is placed

on the outbound queue for the messenger thread to continue broadcasting. No

requests are ever reordered, only absorbed.

Tap thread The tap thread is so named because it sits on the end of a

pipe. It is necessary because the Matlab Engine API only provides synchronous

communication in one direction, from master process to slave Engine. The stan-

dard Unix pipe /tmp/legion.pipe provides the reverse channel. This thread is

passed the file descriptor on creation. It then functions as a finite state machine.

On each transition, it does two things

• Read an mxRequest from the pipe. Adjust the local dictionary as necessary

(as it has just been executed by the stub that wrote it) and then put it

on the outbound queue.

• Check to see if the engine) thread has signalled a state transition.

44

When it hits the STOPPED state, it terminates.

Note well, no ordering is enforced between the two sources of mxRequests for

the outbound queue. To do so, both engine and tap threads would have to see

all the requests on the queue. There is no simple way to distinguish between a

request meant for execution here and one passing through after already having

been executed, which makes this infeasible.

3.3 Solution using RMI

The system described in this section (known as Concurrent Matlab over RMI)

was created to test the feasibility of using facets as a design pattern. In this

prototype, the framework is directly translated into the corresponding Java ob-

jects. The facets are Java objects, the glyphs are HG objects. Java threads run

in the same virtual machine as a native thread which implements the Matlab

kernel, gaining the advantages of concurrency without the performance penalties

of communication with a separate daemon process. In particular, HG objects

can be equipped with direct references to these Java objects in their metadata,

which means a great deal of the system can be written in Matlab. The facets

communicate with each other through Java’s remote method invocation mech-

anism.

The system consists of two Java class hierarchies (shown in figure 3.4) and

one set of Matlab class definitions. These will be described in turn.

Rune

Glyph
Root

RootWindow

Fact

Name Executable

Figure 3.4: Class hierarchies

45

3.3.1 Metadata

Facts Metadata and primary values travel as instances of class Fact, which is

a wrapper around a (key,value) tuple, and two optional attributes. These are

a location (a small nonnegative integer) and a payload (a list of other facts).

Locations of value NO LOCATION are wildcard or unassigned. Facts with no value

are possible. These incomplete facts act as wildcards and query templates.

The normal case is for the facet to store a hash table of Facts, one per

metadata item. Each Fact has a key, value, the location of the facet, and no

payload. On metadata update, the relevant Fact is broadcast to the rest of the

mirror. When a peer receives a fact, it discards or accepts it (and signals this

to the originator), based on causality, value validity and key validity criteria. If

accepted, it is stored as the new metadata value and reflected to any separate

backing instance.

Certain facts form a coherent subset of the metadata and need to be up-

dated in synchrony. The specific motivating example was the primary value of

a Matlab surface object. Each vertex of a surface has three coordinates and a

colour, specified by four separate properties. Changing one (especially, specify-

ing a different number of points to the number specified by the other properties)

is unwise. Updates from the backing instance are therefore processed conven-

tionally, and then packed as the payload of a single Fact. Upon receipt, each

Fact in the payload is processed as above and accumulated for simultaneous

update of the backing instance.

There is provision for time stamping with an instance of class StateVector,

which implements a standard state vector [13][28]. Only Facts which have the

right time stamp (are causally ready) for execution are processed immediately.

The rest are queued internally. The queue is examined when a new Fact is

presented and causally-ready Facts are executed. In the present version, all

Facts are always causally ready. When a mechanism for tracking and updating

the current state vector is created, this test will be made operable. The question

to be settled is what scope a state vector has - one facet or one tree?

46

Names A Name is a Fact which binds a mirror or tree identifier to a reference

to a Facet. Each facet keeps references to its peers as a hash tables of Names.

The Name of each facet in a tree is kept in a hash table by the root of that tree.

Incomplete names (binding an identifier to a null reference) are equipped with

the ability to complete themselves using the resources of the facet making the

enquiry. The implementation of this search by visit runs as follows:

1. An Ancestor A is called upon to complete a Name N .

2. The facet calls N ’s complete method, passing as parameters a set of peers

P and a set of Names R which might contain the key of N .

3. If N is complete, it stops and returns itself.

4. If N is not complete, it attempts to find a complete Name N ′ with the

same identifier from the list R.

5. If N ′ exists, it contains the value needed to complete N . N copies this

value and the location from N ′, and returns itself.

6. If not, N switches state to SEARCHING and selects one or more peers of A

from P . For each peer, it calls the complete method with N as parameter,

and the search proceeds recursively.

Currently, the algorithm is implemented as a broadcast query. A Name in

the SEARCHING state checks the peer it is sent to, and if it can’t find a value,

gives up instead of continuing on another peer. Entirely different searching

behaviour can be constructed by creating a subclass of Name, equipped with

different states and another selection algorithm (possibly traversing the n-ary

tree which is labelled by the location identifiers, which would be more efficient).

Executables An Executable is a Fact whose value is code or a reference to

code. That is, when the value is evaluated, it may have the side effect of starting

a computation in the place where it is evaluated. For this purpose it is equipped

with a slot for an alternate value, and an internal flag which defines whether

47

the Fact executes globally or locally. The value the Executable exhibits varies

in accordance with this flag’s value.

3.3.2 Facets

Facets are objects descended from class Rune. Rune stores metadata as a

hashtable of Facts, the peer list as a hash table of Names, a reference to a

parent in the tree, a reference to the ancestor of the tree, the location of the

tree, and a (possibly empty) list of children. With this information it imple-

ments three interfaces, corresponding to the three sets of behaviour expected of

a rune. These are detailed in the paragraphs below.

A Rune has three states, active, inactive, and dead. It starts off INACTIVE.

When it successfully adopts a tree, mirror, and backing instance, it become

ACTIVE and responds to requests from the outside world. When it no longer

is part of a tree, it becomes DEAD, withdraws from the mirror and unbinds the

backing instance, and awaits garbage collection.

Peer Peer is an interface containing the interactions between peer facets of

a mirror. Peers are by definition in other places, so this interface extends

java.rmi.Remote, to make these methods remotely invokeable.

Peers add or remove facets from their list of peers. The current scheme is

a two stage broadcast using the add method. This method takes two Names,

one belonging to the candidate facet which wishes to join the mirror, and one

belonging to a referee. The broadcast proceeds as follows:

1. The candidate C uses the naming service provided by the registry to find

a facet R of the mirror with the same identifier as C.

2. add() is called on R with candidate C and referee also C3.

3. R acts as referee to C, calling add() on each of its peers, with candi-

date C and referee R. When the broadcast is finished (and the timing is
3In this discussion the Name of a facet and the facet are used interchangeably, where it is

clear from context which is used.

48

important), C is added to R’s peer set.

4. As each peer P receives the invocation of add, it adds C to its peer set,

and then calls add() on C with P as candidate and no referee.

5. As C receives each invocation of add, it adds that P to its set of peers.

At the end of this process, two conditions hold. First, every facet in the mirror

is aware of the new peer. Second, the new peer knows every one of the existing

peers that is aware of it. It can be shown that these properties hold even when

several candidates are joining the mirror simultaneously. As an optimization,

the initial referee R prepares a Fact which summarizes the mirror state and

passes it back as the result of the initial call to add, for rapid synchronization.

When a peer is pruned, it calls remove on each facet of its mirror that it knows

about (which are all the peers which know about it).

Peers evaluate and amend metadata belonging to the mirror. When a peer

updates a metadata value, it is packaged in a Fact. It then calls the method

amend on each of the other peers with this Fact as argument. If the peer is in

the ACTIVE state and the Fact is complete, it is checked for causal readiness as

outlined in section 3.3.1. Causally unready facts are added to a queue main-

tained by each facet4. Causally ready facts are added to the metadata table,

and then reflected to the backing instance, and then success is returned to the

originator.

A peer may request that another peer evaluate a metadata value it holds,

by calling that peer’s evaluate method with a metadata key as argument. The

remote peer then retrieves and evaluates the value it associates with that key,

and returns the results. A second argument supports an optional side effect; if

the relevant fact is actually an Executable, this argument may specify a mode

of execution, in stead of evaluation. This method was originally intended to be

the dual to amend, enabling peers to enquire of each other their values. This is

not really required with the present broadcast-on-update scheme, but the side
4All facts test as causally ready pending further work.

49

effect (indicating a peer’s interest in that particular Fact) is used to implement

distributed execution in glyphs.

A peer can supply a clone of itself for grafting, via the cutting method.

This cutting will have the same mirror identifier, metadata, and primary value.

The cutting is made via Java Object Serialization, which creates a byte stream

that can be reconstructed portably into the object. References to other objects

are handled by serializing them into the stream as well, and rebuilding the ref-

erence graph on deserialization. This stream is then wrapped in an instance

of MarshalledRune, and returned as the result of this method. The wrapping

would not be necessary, except that the children are objects that may be ac-

cessed remotely (Rune implements Peer) and by default the unpacked cutting

is equipped with references to the originals rather than local copies. Unpacking

them by hand ensures the references are to local children. Section 2.3 outlines

another method, but finding a base case for the recursive grafting of an entire

branch is problematic.

Child Child is an interface containing the operations supported by a child

node in a facet tree. Children are created in INACTIVE state, either when un-

packed as a cutting, or when budded. Such facets ignore (return a null result for)

any operations on metadata, but do participate in update operations on their

mirror population. A child transitions to the ACTIVE state when it is supplied

with

• a Parent in the facet tree,

• an Ancestor at the base of the facet tree5,

• the location of the facet tree, and

• information for binding a backing instance.

These things are passed in as arguments to the adopt method. This ensures

that any facet in the ACTIVE state is equipped to interact with the tree, mirror
5Which is always the same as that of the parent.

50

and backing instance, removing the need for intermediate states where some of

this information has been supplied and some hasn’t. Firstly, the new facet uses

the name services provided by the ancestor to seek a mirror. If one already

exists in another place, the child uses the add operation in the Peer interface

to join it and get a copy of the mirror state. If one already exists on this tree,

the adoption is performed by the elder facet, and this one disposes of itself.

If none exists, the child equips itself with some default state. Secondly, the

child integrates itself into the tree by registering with the parent and ancestor6.

Thirdly, the child takes the information about the binding instance (a generic

array of Objects) and feeds it to an internal method. In subclasses with external

backing instances, this method is overridden to do the binding. In Rune, it has

a null implementation. Then the child changes to ACTIVE state.

If the child is already in ACTIVE state, the call to adopt is interpreted as

a request to move from the old tree location to the new one. This is done by

unbinding from the old parent and ancestor, and registering with the new ones.

No mirror operations are necessary. The instance tree might need adjusting,

which is delegated to another hook method with null implementation in Rune.

Active children, or inactive cuttings, may have descendants. These should

be informed of the new ancestor/location/backing instances, and this is done

by calling the adopt methods of each child. This recursively informs the entire

branch. Normally these children do not already exist in the tree. If they do, then

the call to adopt replaces them with the existing facets as for any other ACTIVE

facet. If they exist, and are ancestors of the graft site, this creates a cycle in

the tree. In this case, few of the properties of a facet tree still hold, including

termination of the algorithms. Checking for this contingency would require

a traversal from the graft site to the root, and a check of the results against

the mirror identifiers of each descendant, which is expensive. A minimal check

against adopting a facet as its own parent is in place.
6If this happens first, the ancestor will erroneously indicate an existing local facet of the

mirror, the one which just registered.

51

Parent Parent is the dual of Child, containing the operations supported by a

parent node in a facet tree towards its children. Facet trees grow by requesting

a parent to add a facet of a named mirror to their children. This request is

made by calling the graft method of the parent, with the mirror identifier

as argument. The parent then consults the distributed name service (via its

Ancestor), seeking a facet of that mirror.

If one is found on another tree, a cutting is requested from it and unpacked.

The cutting then adopts the graft site as parent (see the Child interface). If a

facet is found on this tree already, it is shifted to the new graft site. If no facet

is found at all, a new mirror is budded with that identifier.

A parent takes updates to the list of children via the adopt and disown

methods, which add and delete children from the list. Note that while growth

of a tree is initiated from the graft site (a Parent), pruning of a tree is initiated

from that which is to be pruned (a Child).

Ancestor Ancestor is an extension of Peer which adds the operations sup-

ported by a root node in a facet tree. Ancestors complete names and generate

new identifiers. The base implementation of this interface is the class Root,

which is a subclass of Rune. Root overrides the methods in child with null

implementations, because the base of a tree is never budded or grafted.

Descendents of the root may create an incomplete Name, and pass it as

argument to their ancestor’s complete method. This method then undertakes

to find a reference to the named mirror, and complete the Name, using the search-

by-visit mechanism outlined in section 3.3.1. In Root, this is implemented as a

call to the Name’s complete method, with the root facet’s peers and name list

as argument.

The name list is compiled by the root, from the calls to the bind method

made by children during adoption. This method takes a Name as argument. In

Root, it simply adds it to a hash table of other such Names. Facets which are

changing to DEAD state call the loose method with their Name as argument, and

52

are removed from the list.

New identifiers for trees are location numbers. They are generated by treat-

ing the name space as a b-ary tree. The first tree in the forest has location

0, and descendants with locations 1 . . . b, where b is a constant. A tree with

location n has descendants nb + 1 . . . nb + b. A location may either be occupied

(there is a tree there), vacant (there is definitely no tree there) or requested (the

location has been given out, but no facet from there has joined the root mirror).

Upon a request for a location, a root first seeks a vacant location among its de-

scendants to satisfy the request. If it finds one, the location is marked requested

and returned. If no descendant locations are vacant, an occupied one is chosen

arbitrarily and the request delegated. If there are no descendants (the requisite

location numbers are greater than a system-defined maximum) the request is

delegated to location zero. If location zero is not occupied, it is the answer to

the request.

This algorithm has been designed for a balance of robustness and speed. A

location is found in at most lg(n) steps (the height of the location tree). A

central name server could do the job in constant time (neglecting congestion)

but represents a single point of failure. A root facet directly administers at most

b locations, its descendants, and is subject to replacement by the other facets in

the mirror if it goes silent. This property requires that each peer facet knows of

all the other peer facets, making vacation of nodes trivial to track. A weakness

is the generator of last resort, location zero. It is the origin of the ensemble,

and will always be replaced as necessary, but two simultaneous overflows to it

when the location is vacant may result in two nodes 0.

New identifiers for mirrors are strings. They are generated by concatenating

string representations of the location of the tree and a counter stored internally.

This counter is initialized to zero at tree creation and incremented at each new

identifier generated. A possible optimization is to preserve the counters for

each location between occupations of that location by an actual facet, giving

the generated identifiers lifetimes limited only by counter overflow.

53

3.3.3 Matlab Bindings

Redefinitions The use of Matlab as a backing application is implemented by

redefining methods on Matlab objects. HG operations mostly operate on double-

precision handles, so the methods redefined are for class double, the built in

ordinary number class. The stragglers are redefined in class char, ordinary

characters. The definitions and some auxilliary functions are all written as

M-files.

The method set takes a handle and optionally some properties. For cases

where the property keys (or values) are not supplied, set has some default be-

haviours as an enquiry function. If the properties or values are not valid, it

ought to throw an error. This behaviour is achieved by passing all of the argu-

ments to the builtin definition of set, which operates on the backing instance

and supplies some output results, which will be returned.

In the absence of errors, the arguments are then parsed into a list of values

and a list of keys. If there are no handles (or no properties), execution returns

at this point. Otherwise, the relevant HG objects are queried for a reference to

a Java object of class mirror.Glyph, which is stored in the Rune property of the

object7. If the query is successful, the result is the facet which this HG object

belongs to. The values and keys are then fed into the facet’s set method, which

updates the mirror metadata. Certain metadata are not reflected, and certain

other metadata must be reflected as a group8. The former are not fed in, the

latter are set aside and fed to an alternate syntax for Glyph.set which creates

and mirrors a multiple Fact across the mirror.

The get method is redefined similarly. At present, it does not call the

evaluate method in the glyph, as metadata updates are reflected immediately

to the backing object’s properties.

Construction is handled by redefining axes, figure, image, light, line,
7Technically, it is stored in a field of the ApplicationData property, which is provided by

Matlab for such user extensions. This imposes a small performance penalty, but does not
otherwise matter.

8An example of why is given in section3.3.1.

54

patch, rectangle, surface, text, uicontrol, uimenu, and uicontextmenu.

Each new definition calls the built-in constructor, and then checks to see if the

new instance should be shared.

The root window, figures and axes are structural. If the user supplies a

name (read from the Tag property after creation of the backing instance) and

the parent instance is shared, then the new child instance is shared also. The

parent facet is found from the Rune property of the parent instance, and a mirror

with the supplied name is grafted onto it. The child facet is inserted into the

Rune property of the new backing instance, and callbacks in the instance are

overridden as described below. The new facet receives an initial copy of the

writeable metadata in the backing instance. If the mirror already exists, the

graft will involve creating a branch of the instance tree to back the newly grafted

facets. This is implemented in the runify Matlab function, which recursively

builds the HG instances required, from a digest of metadata and object types

obtained by traversing the facet subtree.

All other HG objects are half-structural. If the parent instances are shared,

the child instance will also be shared. If no tag is supplied for the mirror, one

is generated by the root facet for it. All other details are as described above.

In section 2.3, non-structural facets propagate along their parent mirrors when

they are budded, and disappear from all facets of their parent mirrors when

they are deleted. This functionality has not been implemented yet.

Callbacks of HG objects are implemented using the idea of section 2.5. Call-

backs are stored as instances of Executable, and act as ordinary metadata.

Unlike ordinary metadata, they are stored only within the facet. When a HG

object is bound as a backing instance to a glyph, the existing callbacks are

stored in the facet and the relevant properties replaced with calls to Matlab

functions with names like Callback. Each of these looks up the relevant call-

back within the Java facet, and executes what the enquiry returns. By default

callbacks execute collaboratively. The enquiry to the facet prompts it to call

evaluate for that callback key to the last facet that updated it, in a mode that

55

will execute the callback. The set.m implementation is rigged to update only

the facet and not the backing instance for callbacks.

Glyph The class mirror.Glyph is a subclass of Rune specialized for dealing

with Matlab backing instances. Instances of Glyph possess the following extra

state:

• An instance of com.mathworks.jmi.Matlab, whose methods it uses to ask

Matlab to evaluate function and command calls9. They are added to an

internal event queue in the backing application instance, and evaluated

when idle.

• A double-precision field for the backing instance’s handle.

• A string denoting the type of HG object (the constructor name).

The amend, evaluate and adopt implementations in Rune delegate opera-

tions on the backing instances to protected methods. In Glyph, these hooks

are overridden to issue the correct Matlab commands - set for update, get for

query, and the appropriate constructors for adoption and budding. This has

the consequence that the system must be idle (not executing user code) before

these queued commands update the local instance tree.

This means that grafting induced by user Matlab code (such as the con-

struction of a shared object) cannot have queries on aspects of the instance tree

interspersed with the facet operations, because the facet method call is exe-

cuted by the same thread that answers the queries, and deadlock results. As

there must be a single thread of control to ensure HG operations execute in the

correct order, this introduces significant complications. Notably, the algorithm

of graft is written in Matlab, and calls Java methods to probe the cutting for

structure and metadata, and to supply the backing instances to the cutting in

a modified version of adopt.
9As an optimization, this is actually a class variable.

56

RootWindow The class mirror.RootWindow is a subclass of Root specialized

to use Matlab as the backing application. If Java permitted multiple inheritance,

it would be a subclass of both Root and Glyph. As it is, the extra fields and

reimplementations are direct analogs of those in Glyph.

57

Chapter 4

Empirical Evaluation

4.1 Methodology

After the implementation of Concurrent Matlab stabilized, a short useability

trial was run on various machines available to the author. These were:

• A SPARC workstation running Solaris 2.8 with 256 megabytes of RAM

and a single 400 MHz processor. This has Matlab 5.3.1, JDK1.2, the

prototype Concurrent Matlab over RMI, and SunForum 3.0.

• A generic PC with 16 MB of RAM and a 166Mhz processor. This has

Matlab 4.0 and Microsoft NetMeeting installed.

• An IBM SP2, with 128 MB, 266 MHz per node. This has LAM/MPI,

Matlab 5.2 and Concurrent Matlab over MPI.

The SP2 nodes are linked by a dedicated high-performance switch, which the

LAM/MPI implementation uses in client-to-client mode. All machines are on a

common 100-base-T Ethernet which is used by the T.128 applications and the

Java RMI stack.

A simple demonstration GUI was written (figure 4.1) consisting of two but-

tons, a text field, and a line plot showing a randomly generated data set. One

button’s callback regenerated the data, the other’s evaluated the contents of

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Test user interface - screen shot

the text field. The author started a collaborative session, instantiated the GUI,

played with the GUI for a while, and then shut down. This process was repeated

using various collaboration systems.

4.2 Results

Interactive performance In actual operation, after the shared GUI was

created at all places, all systems exhibited a similar response time to user input

events (roughly a third of a second). NetMeeting and SunForum were slightly

slowed by their implicit floor-control requests all of the time. The Concurrent

Matlab prototypes weren’t. Concurrent Matlab over RMI exhibited significant

lag whilst cloning an entire figure plus contents, and faster speed all of the

rest of the time. Concurrent Matlab over MPI exhibited significant lag when

invoking callbacks from places not at location 0. Text editing was local in the

CM systems, and thus faster than in NetMeeting, which insisted on reflecting

each inserted or deleted character.

To truly meet criteria 1, and 2 of the ideal distributed solution, the time

59

to invoke the actions associated with controls, and the time to see the results

reflected, needs to be significantly smaller than the time for the results to be

computed. All three systems met this goal.

Distributed Operation All systems managed to span several places comfort-

ably. The primary distinction is in convenience of installation. In descending

order of portability:

• Concurrent Matlab over RMI needs a Java virtual machine, and a version

of Matlab capable of attaching to it.

• NetMeeting and SunForum are limited to their single platforms and oper-

ating systems. By virtue of their adhering to an open standard (T.128),

they are able to interoperate with other platform-specific T.128 systems,

but those will have the same problems.

• Concurrent Matlab in C needs an MPI implementation, a specific compiler

and POSIX-compliant library suite, and a local installation of Matlab at

each place. This is too specific to be widely distributed.

When in the appropriate environments at each place, all three systems worked

reliably over the vanilla Ethernet under conditions of varying load. This is

therefore also the order in which they are ranked under criterion 4 of the ideal

solution.

Collaborative work Under a T.128 session between SunForum and NetMeet-

ing, one user held the floor and could work, and the other user did not hold

the floor and could not work. The user who did not hold the floor could not do

local independent work, because these systems usurp the hardware cursor to in-

dicate where the working user is pointing. This group cursor gave more effective

awareness of what the active user was doing, and the floor control eliminated

consistency issues. Balancing that was the requirement that windows must be

unobscured on the machine that shares them, which could not be met conve-

60

niently. As there was no directory server accessible, sessions were arranged by

supplying IP addresses, which was less than convenient.

A Concurrent Matlab over RMI session was held, with both ends on the

same machine. Each Matlab instance could be worked with concurrently, and

resources not directly shared were free to be used for independent local work.

The absence of intrusive floor-control negotiation greatly aided useability, as

did the absence of limitations on visibility. Unrestricted collaboration exhibited

almost no consistency issues, because the time to mirror changes was so small.

Support for group awareness is specialized for Matlab GUI’s - the change of a

value or invocation of a callback is apparent to all users, but in between there

is little indication of what the other user is up to. Sessions were arranged by

supplying a session name and contact host name, one step more convenient than

SunForum, but not much.

A Concurrent Matlab over MPI session was held, with three instances on

three nodes of the SP2. Each instance of the interface could be worked with

concurrently, but conflicting requests were not serialized. The various layers of

protocol (mxRequest serialization down a pipe, queues, MPI, then the Matlab

Engine) make the time to reflect changes globally long enough that this is an

issue. Support for group awareness is as minimal as the other CM prototype,

but not as harmless, because conflicting requests do not result in consistent

results across the mirror. Session management is also more awkward than the

other systems, requiring the simultaneous coordination of all the users involved.

Of the three systems, the one that best meets criterion 5 of the ideal col-

laborative solution is Concurrent Matlab, using RMI. The lack of consistency

guarantees in both CM prototypes might be awkward, but not quite as awk-

ward as the inability to support flexible, collaborative work under the T.128

implementations.

Transparent reusability The test GUI was originally coded in normal Mat-

lab code as a single function to manage the GUI window and take its callbacks.

61

For SunForum and NetMeeting, it required no modification. For Concurrent

Matlab over RMI, it required the addition of tags to a few structural objects.

For Concurrent Matlab in C, replacing commands with their MEX-file equiva-

lents required some search-and-replace commands in vi, and the restatement of

some of the commands to eliminate convenience syntaxes the MPX library could

not parse. The effort involved was trivial in all cases. I believe that in larger

cases, tagging of structural HG objects is good software engineering practice,

and therefore the effort of porting to Concurrent Matlab over RMI will remain

trivial, but the same cannot be said of porting to Concurrent Matlab over MPI.

As regards criterion 6, the system that most supports transparently reuseable

code is application transparency, very closely followed by the Concurrent Matlab

over RMI prototype.

62

Chapter 5

Conclusions and Future

Work

5.1 Conclusions

This work is based around the conception of a running model as a set of dy-

namically changing values. These values are either data, computations that can

be run on data (code), or data that is visible and accessible to users (visual-

ization/interface components). In a single place, a model uses these values in

a tree, starting from the parent application and adding child procedures, vari-

ables, and graphics objects. Each of these kinds of value has a hierarchy which

is also a tree. This instance tree represents the computation, and its interaction

with the user. In a distributed modelling computation, some of these values will

need to be in more than one place at once. Each point of presence, or facet of

a given value, will need to remain consistent with the other facets. This collec-

tion of facets we call a mirror. As with normal instances, the various mirrors

which overlap at a place contribute their facets to a tree of values. A forest of

such facet trees, each one shaped by the needs of the user and the computa-

tion at each place, can express collaboration among users, concurrency among

63

computations, and synchronization between both.

The facets of a mirror are obliged to be consistent, but not identical. This

difference from simple replicated objects enables a facet to transparently replace

an ordinary object in an existing modelling tool, and allow concurrent work on

the value within limits. If consistency, synchronization, and communication are

handled entirely with the mirror, existing code written in widely-used mathe-

matical languages such as Matlab can be reused easily in collaborative modelling

work. The semantics of such a mirror are discussed in depth.

Two specific kinds of facets can be identified in the mathematical language

Matlab. Runes are facets of a value and a set of metadata - variables. Glyphs

are runes which are visible to a user - plots, surfaces, and other graphical com-

ponents. Using these concepts, I have constructed two prototype systems which

implement glyphs for this language. These systems attempt to provide a partial

solution to the collaborative visualization problem. Their construction drove

the generation of theory, and forms the major part of this work. Evaluation of

these systems against the relevant criteria for an ideal solution show the ability

to meet four of them.

The second prototype, Concurrent Matlab over RMI, represents a novel tool

for use with the Matlab language. It uses facet trees as a design pattern for

a Java class hierarchy that can closely cooperate with existing Matlab code

to obtain transparently collaborative applications. It uses a novel tree-ordered

naming scheme for the trees, a refereed algorithm to merge mirrors, and exhibits

high responsiveness and transparency in practice. Facet trees are therefore a

useful abstraction for reasoning about collaborative visualization in models. It

is feasible to map existing code to them generally, in an application-transparent

way.

5.2 Future Work

The following is a partial list of research issues to be followed up in future work.

64

Implementing runes Extending the Java implementation to cover Matlab

inline functions, and Matlab workspace variables. At present the aspects of

the facet tree framework covering variables and functions are theory with no

practice.

Operational transform in trees Researching the applicability of opera-

tional transform to tree operations such as insert and delete. When two graft-

ing or pruning operations conflict over a shared mirror, the result is undefined.

Serialization is possible using state vectors, but a better solution would be to

transform one operation to take account of the other’s effect.

Optional locking in mirrors Sosic and Sun [29] have proposed an optional

locking scheme, where different users assert ownership of subsets of the shared

work. Under this scheme, unlocked portions may be updated concurrently,

shared locks may let a subset of places update that section, and exclusive locks

implement traditional locking semantics. While this scheme has limited appli-

cability to glyphs, where it would require non-transparent extensions to the user

interface for lock management, no such considerations hamper its use by user

code (i.e. non-glyph runes). There, conflict avoidance between expensive com-

putations would be much more effective than rolling them back. This scheme

can be implemented inside a mirror, by locking subsets of the metadata. Locks

can be acquired and released by applying heuristics as facts are exchanged.

Research into the correct heuristics will present an interesting challenge.

Visualization as graphics editing Interactive changes to a visualization

interface can be considered as an interactive editing session, where the editing

operations are initiated from user code. The GRACE project [26] has produced

several algorithms and techniques directly applicable to consistency mainte-

nance of shared graphics under unconstrained collaborative editing. The most

immediately useful are a set of concrete operational transformations for graph-

ical objects. Another is the concept of compatible and conflicting groups of

65

operations[27], and an algorithm (MOVIC) for efficiently determining them.

When a metadata update arrives at a glyph, it must either accept it as compat-

ible or reject it. A better option than abrupt rejection would be for the glyph

to create multiple backing instances, each of which reflects a compatible group

of operations applied to it. These compatible groups must be determined by

the mirror as a whole, and the MOVIC algorithm provides a means of doing so.

Integrating this algorithm into facets raises interesting challenges.

Mathematics as document Matlab regards the local workspace as a set

of variables. Other languages, such as Maple, present it as a human-readable

document. Previously, operational transform has been applied string-wise to

text [28] and object-wise to graphics [26]. I would like to extend it to apply

to mathematical expressions. There is a qualitative difference, as expressions

are meant to be evaluated into answers, while text and graphics are ends in

themselves. Existing document models such as the W3C Document Object

Model [8] represent documents as trees of objects, subject to querying and

editing in a domain and content-neutral fashion. These trees map naturally to

facet trees. A toolset for writing models as pages of mathematics, collaboratively

editing, running and visualizing them, would be a worthwhile research goal.

Embedded facets Facets were originally designed as an application-neutral

interface to the values that are manipulated in a simulation. There exist a lot

of legacy codes which can be used as domain-specific “black boxes”. If these

codes are equipped with facet behaviour, and the other facets of the mirror are

plugged into other, more general modelling tools, then the original codes can be

reused more easily and expanded in capability in a general way. This kind of

composable simulation [18] is already a topic of active research, mostly centred

around the interfaces needed. Facets could be such an interface.

66

Appendix A

Concurrent Matlab under

MPI

This appendix comprises source file listings for the first prototype, Concurrent

Matlab using MPI.

A.1 The MPX library

This library expands the MEX and Engine libraries supplied with Matlab, using

the LAM/MPI and standard Unix libraries. It is designed to compile as part of

either MEX-files (plug-in libraries for Matlab) or into Engine files (standalone

executables which interact with Matlab processes). For more information about

the Engine and MEX application programming interfaces, please see [15]. For

more information about the Message Passing Interface, please see [16].

mpx.h

/* file: mpx.h

**

** purpose: header of library of MPI and mxArray widgets for MEX-file use

**

** created: 6/4/2000 by AHD

67

*/

/* Redundancy insurance */

#ifndef _MIDGET

#define _MIDGET

/* Private debugging flag */

#ifdef NOT_DEFINED

#define _MPX_DEBUG

#endif

/* Useful headers */

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <fcntl.h>

#include <unistd.h>

#include "mpi.h"

/* If it’s not a MEX-file, this must be an Engine file */

#ifdef MATLAB_MEX_FILE

#include "mex.h"

#define mxPrintf mexPrintf

#else

#include "engine.h"

#define mxPrintf printf

#endif

/* Flag bits for a packed mxArray header */

#define LOGICAL_BIT 1

#define COMPLEX_BIT 2

#define EMPTY_BIT 4

/* mxArray functions */

mxArray * mxCreateScalar(double value);

mxArray * mxMakeStructure(mxArray *values[], const char *names[], int nfields);

int mxGetFlags(const mxArray * this);

void * mxPack(const mxArray * this, size_t * bigness);

mxArray * mxUnpack(void * this);

/* Nonblocking file functions */

FILE * propen(const char * path);

FILE * pwopen(const char * path);

/* Miscellaneous definitions */

#define BIG 10240

#define ROOT 0

#define FALSE 0

#define TRUE 1

#define MAYBE 2

#define WORKING 3

68

#define LISTENING 4

#define STOPPED 5

/* Standard sizes */

#define mxMAXCMD 1024 /* MATLAB engine command buffer */

#define mxMAXRQ 512 /* Entries in a request queue */

#define mxMAXOUT 10240 /* MATLAB engine output buffer */

#define mxMAXHDR 10 /* Scalar fields in an mxArray header */

#define mxMAXCBACKS 10 /* Number of callbacks registered per object */

/* Kinds of mxRequests */

#define NO_REQUEST 0

#define SET_REQUEST 1

#define GET_REQUEST 2

#define CREATE_REQUEST 3

#define DESTROY_REQUEST 4

#define CALLBACK_REQUEST 5

#define EVALUATE_REQUEST 6

/* Default values for the status fields of mxRequests */

#define REQUEST_INVALID -1

#define REQUEST_VALID 1

/* Kinds of callback */

#define CALL_INVALID 0 /* For future use */

#define CALL_PRIMARY 1

#define CALL_BUTTONUP 2

#define CALL_BUTTONDWN 3

#define CALL_MOTION 4

#define CALL_DELETE 5

#define CALL_RESIZE 6

#define CALL_CHANGE 7

/* Structure representing a Handle Graphics request */

typedef struct {

int kind; /* What kind of request this is */

int status; /* Further detail on the above */

char * words; /* Associated name */

mxArray * array; /* Associated Matlab value */

mxArray * object; /* Associated Matlab handles (at root) */

double parent; /* Parent of object (at root) */

int origin; /* Which node originated this request */

int location; /* Which node the request is in now */

int references; /* Reference count */

} mxRequest;

/* Structure representing a thread-safe FIFO queue of mxRequests */

typedef struct {

mxRequest * contents[mxMAXRQ]; /* List of entries in the queue */

int head; /* Index of head of queue */

int tail; /* Index of tail of queue */

int count; /* Population of queue */

const char * name; /* Name of queue */

69

pthread_mutex_t gate; /* Gatekeeper mutex */

} mxQueue;

/* Functions to play with queues of requests */

mxQueue * mxInitQueue(const char * name);

void mxFinalizeQueue(mxQueue *q);

void mxEnqueue(mxRequest * this, mxQueue *q);

mxRequest * mxDequeue(mxQueue *q);

int mxQueueCount(mxQueue *q);

/* Functions to play with requests */

void mxDestroyRequest(mxRequest * this);

mxRequest * mxCreateRequest(int kind, int origin, int here);

mxRequest * mxStructureToRequest(mxArray * box, int kind, int here);

mxArray * mxRequestToStructure(mxRequest * this);

int mxIsLocal(mxRequest * this);

/* A magic bullet is a request to destroy the root object (0.0) */

mxRequest * mxCreateMagicBullet(int here);

int mxIsMagicBullet(mxRequest * this);

/* Functions to shift requests around via MPI */

int mxSendRequest(int dest, MPI_Comm comm, mxRequest * this, int src);

mxRequest * mxRecvRequest(int source, MPI_Comm comm, int here);

/* Functions to shift requests around via pipes */

int mxWriteRequest(mxRequest * this, int pipe);

mxRequest * mxReadRequest(int pipe, int here);

/* Graphics status values */

#define STATUS_NOMINAL 0

#define STATUS_INVALID (-1)

/* An object handle guaranteed to be invalid */

#define INVALID_HANDLE (-1.0)

/* Structure representing a Handle Graphics object */

typedef struct _object {

double handle; /* What this instance of Matlab calls it */

double rootID; /* What the root calls it */

double rootParent; /* What the root calls its’ parent */

char * callbacks[mxMAXCBACKS]; /* Collection of callbacks */

int status; /* What are we doing to it? */

struct _object * next; /* Away from head of list */

struct _object * previous; /* Towards head of list */

} mxObject;

/* Structure representing a thread-safe dictionary of mxObjects */

typedef struct {

char * name; /* What it’s called */

mxObject * start; /* Head of the list */

int count; /* Population of the list */

pthread_mutex_t * gate; /* Gatekeeper mutex */

} mxDictionary;

70

/* Functions to play with mxObjects */

mxObject * mxCreateObject(double h, double r, double p);

void mxDestroyObject(mxObject * this);

void mxSetObjectCallback(mxObject * this, int which, const char * call);

const char * mxGetObjectCallback(mxObject * this, int which);

void mxSetObjectStatus(mxObject * this, int quo);

int mxGetObjectStatus(mxObject * this);

/* Functions to play with mxDictionaries */

mxDictionary * mxCreateDictionary(char * name);

void mxDestroyDictionary(mxDictionary * victim);

void mxAddObject(mxDictionary * those, mxObject * this);

void mxRemoveObject(mxDictionary * those, mxObject * this);

mxObject * mxGetObjectByRoot(mxDictionary * those, double r);

mxObject * mxGetObjectByParent(mxDictionary * those, double p);

mxObject * mxGetObjectByHandle(mxDictionary * those, double h);

mxArray * mxGetLocalHandles(const mxArray * handles, mxDictionary * those);

mxArray * mxGetRootHandles(const mxArray * handles, mxDictionary * those);

int mxExists(const mxArray * handles, mxDictionary * those);

mxArray * mxCensorProperties(const mxArray * old, mxDictionary * those);

void mxListDictionary(mxDictionary * those, int here);

void mxUpdateDictionary(mxDictionary * those, mxRequest * r, mxArray * h);

#ifdef MATLAB_MEX_FILE

/* MEX-file argument parsers */

int mexParseOne(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

int mexParseC(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

int mexParseXY(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

int mexParseXYC(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

int mexParseXYT(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

int mexParseXYZ(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

int mexParseXYZT(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

int mexParseXYZC(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]);

#else

/* Function to put an mxRequest to an Engine using a mxDictionary */

char * engRequest(Engine * e, mxRequest * this, mxDictionary * those);

#endif

#endif

71

mpx.c

/* file: mpx.c

**

** purpose: library of MPI and mxArray widgets for MEX-file use

**

** created: 6/4/2000 by AHD

*/

#include "mpx.h"

/* A note on conventions:

* "RCF" is short for "Reality Check Failed". It denotes Bad Things.

* mxArrays are a Matlab-defined opaque type. Constant pointers to them

denote arrays that must be copied before being changed or used as an

ingredient in a larger array; Matlab checks this thoroughly and flags

exceptions to it. When the checking fails, strange and subtle errors

proliferate, so don’t cast them to volatiles, use mxDuplicateArray.

* Whilst all of the collective data types are thread-safe, the objects

they point to are not. mxObjects and mxRequests should never be fiddled

with whilst part of a mxDictionary or a mxQueue. Interface functions to

guarantee this will be added Real Soon Now.

* The adjective "jobbing" refers to buffer or temporary variables which

are used for multiple purposes. */

/* Dual to mxGetScalar.

Returns a pointer to a real, 1x1 mxArray with the value specified,

or NULL on allocation failure. */

mxArray * mxCreateScalar(double value) {

mxArray * that = mxCreateDoubleMatrix(1,1,mxREAL);

if (that) (mxGetPr(that))[0] = value;

return that;

}

/* Simplified variant of mxCreateStruct.

Returns a pointer to a 1-cell structure mxArray with the field names and

values specified, or NULL on allocation failure. */

mxArray * mxMakeStructure(mxArray *values[], const char *names[], int nfields) {

mxArray * array = NULL;

int i;

if (array = mxCreateStructMatrix(1,1, nfields, names)) {

for (i=0; i<nfields; i++) mxSetField(array, 0, names[i], values[i]);

}

return array;

}

/* Examines a given mxArray and returns a flag byte for use in a packed

header. The bits are defined in mpx.h. "this" must be a valid pointer. */

int mxGetFlags(const mxArray * this) {

return (mxIsLogical(this) ? LOGICAL_BIT : 0)

+ (mxIsComplex(this) ? COMPLEX_BIT : 0)

+ (mxIsEmpty(this) ? EMPTY_BIT : 0);

72

}

/* This packs one cell of a structure mxArray into a contiguous binary object.

It returns a pointer to a concatenated copy of all the relevant fields of

that cell. The second parameter gives the extent in bytes. The third

gives the index of the mxArray cell to copy. It calls mxPack recursively

to pack the field values. The first parameter must be a valid mxArray

pointer. */

void * mxPackOneStruct(const mxArray *this, size_t *l, int a) {

void * places[256]; /* List of addresses to copy from */

size_t sizes[256]; /* Number of bytes to copy from each */

int parts=0; /* Length of these two lists */

char * cursor; /* Current copying point */

size_t total=0, i; /* Tallying variables */

int fields; /* Number of fields in this structure */

int last; /* Last header item */

char * blob; /* End result */

/* Lay in header */

fields = mxGetNumberOfFields(this); /* Number of fields */

places[0]=&fields; sizes[0]=sizeof(int); parts++;

places[parts]=&(sizes[parts+1]); /* Field offsets */

sizes[parts]=fields*sizeof(size_t); last = parts; parts++;

/* Lay in fields */

for (i=0; i<fields; i++) {

mxArray * that = mxGetFieldByNumber(this, a, i);

places[parts] = mxPack(that, &(sizes[parts])); parts++;

}

/* Allocate some memory and compile everything */

for (i=0, total=0; i<parts; i++) total += sizes[i];

blob = mxMalloc(total);

for (i=0,cursor=(char *)blob; i<parts; cursor+=sizes[i], i++) {

memcpy((void *)cursor, places[i], sizes[i]);

if (i>last) mxFree(places[i]);

}

if (l) *l = total; /* Return bytes created */

return blob; /* Return package */

}

/* Dual to mxPackOneStruct.

The first parameter is a binary object containing the field values for one

cell of the third parameter, a structure mxArray. The fourth parameter

denotes which cell of the structure to fill.

This function decodes the header, calls mxUnpack to create the values,

and puts them in the right place.

The format is self-delimiting, however mxUnpack needs to know how many

bytes of the binary object were consumed. This is returned in the

second parameter. */

void mxUnpackOneStruct(char *blob, size_t *offset, mxArray * term, int index) {

mxArray * that; /* Value under consideration */

73

int fields; /* Number of fields to unpack */

size_t * offsets; /* Field offsets */

char * cursor; /* Current unwinding point */

int i; /* Tallying variable */

/* Read off number of fields and offsets within the blob */

cursor = blob;

fields = *((int *)cursor); cursor += sizeof(int);

offsets = (size_t *)cursor; cursor += fields*sizeof(size_t);

/* Unpack the fields and put them into the matrix */

for (i=0; i<fields; i++) {

that = mxUnpack((void *)cursor);

mxSetFieldByNumber(term, index, i, that);

cursor += offsets[i];

}

if (offset) (*offset) = cursor-blob; /* Return bytes consumed */

}

/* Takes an arbitrary mxArray as its’ first parameter, and creates a

contiguous binary object that represents it. It returns a pointer to the

object, or NULL if the mxArray cannot be packed. It returns the size of

the object in bytes via the second parameter.

Currently supported types of mxArray are full double-precision numeric

arrays, character arrays (Matlab strings) and structure arrays. */

void * mxPack(const mxArray * this, size_t * bigness) {

mxClassID kind; /* What class of array this is */

int flag; /* Flag byte */

int dims; /* Number of dimensions */

const int * dlist; /* List of dimensions */

int fields, nelem; /* Number of fields and elements */

char ** flist; /* List of field names, if any */

int parts=0; /* Number of things to copy */

void * places[256]; /* List of addresses to copy from */

size_t sizes[256]; /* Number of bytes to copy from each */

char wild[256]; /* TRUE if that address needs to be freed */

void * blob; /* The end result */

char * cursor; /* Current copying point */

size_t total=0, i; /* Tallying variables */

bzero(wild, 256*sizeof(char)); /* Flag all addresses tame */

/* Diagnose array, prepare header */

kind = mxGetClassID(this); /* What kind? */

places[0]=&kind; sizes[0]=sizeof(mxClassID); parts++;

flag = mxGetFlags(this); /* What flags? */

places[parts]=&flag; sizes[parts]=sizeof(int); parts++;

places[parts]=(void *)mxGetName(this); /* What array name? */

sizes[parts]=(mxMAXNAM)*sizeof(char); parts++;

dims = mxGetNumberOfDimensions(this); /* How many dimensions? */

places[parts]=&dims; sizes[parts]=sizeof(int); parts++;

dlist = mxGetDimensions(this); /* Dimension details */

74

places[parts]=(void *)dlist; sizes[parts]=dims*sizeof(int); parts++;

/* Lay in data */

if (mxIsEmpty(this)) {

/* No data to be copied */

} else if (kind == mxDOUBLE_CLASS) { /* Double precision tensor */

places[parts]=(void *)mxGetPr(this); /* Real part */

sizes[parts]=mxGetNumberOfElements(this)*sizeof(double); parts++;

if (mxIsComplex(this)) {

places[parts]=(void *)mxGetPi(this); /* Optional imaginary part */

sizes[parts]=mxGetNumberOfElements(this)*sizeof(double); parts++;

}

} else if (kind == mxCHAR_CLASS) { /* Unicode character array */

places[parts]=mxGetData(this);

sizes[parts]=mxGetNumberOfElements(this)*sizeof(mxChar); parts++;

} else if (kind == mxSTRUCT_CLASS) {

fields = mxGetNumberOfFields(this);

nelem = mxGetNumberOfElements(this);

places[parts] = (char *)(&fields); sizes[parts] = sizeof(int); parts++;

for (i=0; i<fields; i++) {

places[parts] = (void *)mxGetFieldNameByNumber(this, i);

sizes[parts] = (strlen(places[parts])+1)*sizeof(char); parts++;

}

for (i=0; i<nelem; i++) {

places[parts] = mxPackOneStruct(this, &(sizes[parts]),i);

wild[parts] = TRUE; parts++;

}

} else {

fprintf(stderr, "%s isn’t something I can pack.\n", mxGetName(this));

return NULL;

}

/* Allocate some memory and compile everything. */

for (i=0, total=0; i<parts; i++) total += sizes[i];

blob = mxMalloc(total);

for (i=0,cursor = (char *) blob; i<parts; cursor+=sizes[i],i++) {

memcpy((void *) cursor, places[i], sizes[i]); /* Copy */

if (wild[i]) mxFree(places[i]); /* Free */

}

if (bigness) (*bigness) = total; /* Return size of the blob */

return blob; /* Return location of the blob */

}

/* Takes a binary object created by mxPack and recreates the corresponding

mxArray. It returns a pointer to the mxArray created. If the object cannot

be unpacked, it returns a pointer to the scalar 42. */

mxArray * mxUnpack(void * this) {

mxClassID kind; /* What class of array this is */

int flag; /* Flag bits */

char * name; /* Name of the matrix */

mxArray * result; /* End product */

char * cursor; /* Where were we? */

75

int dims; /* Number of dimensions */

int * dlist; /* List of dimensions */

char isComplex; /* Is it complex? */

char isLogical; /* Is it a logical array? */

char isEmpty; /* Is it an empty array? */

int nelem, fields; /* Number of dimensions and fields */

char ** flist; /* List of field names, if any */

int i; /* Jobbing counter */

/* Parse the header */

cursor = (char *) this;

kind = * (mxClassID *)(cursor); cursor += sizeof(mxClassID);

flag = * (int *)(cursor); cursor += sizeof(int);

isComplex = flag & COMPLEX_BIT; isLogical = flag & LOGICAL_BIT;

isEmpty = flag & EMPTY_BIT;

name = (char *)(cursor); cursor += mxMAXNAM*sizeof(char);

/* Grab the dimensions, unpack the data */

if (kind == mxDOUBLE_CLASS) { /* Double precision tensor */

dims = * (int *)(cursor); cursor += sizeof(int);

dlist = (int *)(cursor); cursor += dims * sizeof(int);

result = mxCreateNumericArray(dims, dlist, kind,

isComplex ? mxCOMPLEX : mxREAL);

if (isEmpty) {

/* Leave it empty */

} else { /* Copy in real components of data */

memcpy(mxGetData(result),(void *)cursor,

mxGetNumberOfElements(result)*sizeof(double));

cursor += mxGetNumberOfElements(result)*sizeof(double);

if (isComplex) { /* Copy imaginary components, if any */

memcpy(mxGetImagData(result),(void *)cursor,

mxGetNumberOfElements(result)*sizeof(double));

cursor += mxGetNumberOfElements(result)*sizeof(double);

}

}

} else if (kind == mxCHAR_CLASS) { /* Character array */

dims = * (int *)(cursor); cursor += sizeof(int);

dlist = (int *)(cursor); cursor += dims * sizeof(int);

result = mxCreateCharArray(dims, dlist);

if (isEmpty) {

/* Leave it empty */

} else { /* Copy character data in */

memcpy(mxGetData(result),(void *)cursor,

mxGetNumberOfElements(result)*sizeof(mxChar));

cursor += mxGetNumberOfElements(result)*sizeof(mxChar);

}

} else if (kind == mxSTRUCT_CLASS) { /* Structure array */

dims = * (int *)(cursor); cursor += sizeof(int);

dlist = (int *)(cursor); cursor += dims * sizeof(int);

fields = *(int *)(cursor); cursor += sizeof(int);

flist = mxCalloc(fields, sizeof(char *));

for (i=0; i<fields; i++) {

flist[i] = strdup(cursor);

cursor += (strlen(flist[i]) + 1);

76

}

result = mxCreateStructArray(dims, dlist, fields, (const char **)flist);

if (isEmpty) {

/* Leave it empty */

} else { /* Unpack each field */

nelem = mxGetNumberOfElements(result);

for (i=0; i < nelem; i++) {

size_t lump; /* Bytes for this cell of the array */

mxUnpackOneStruct(cursor, &lump, result, i);

cursor += lump;

}

}

} else {

printf("You want me to unpack that?\n");

result = mxCreateScalar(42);

}

mxSetName(result, name);

return result;

}

/* Open a FIFO for reading in nonblocking mode */

FILE * propen(const char * path) {

return fdopen(open(path, (O_RDONLY|O_NDELAY)),"rb");

}

/* Open a FIFO for writing in nonblocking mode */

FILE * pwopen(const char * path) {

return fdopen(open(path, (O_WRONLY|O_NDELAY)),"wb");

}

/* Current implementation of an mxQueue is a circular buffer of size

mxMAXRQ. The head points to the first element. The tail points to the

slot where the next element will go. count = head-tail, modulo mxMAXRQ.

head = tail implies an empty queue. The queue holds mxMAXRQ-1 requests.*/

/* Creates an empty mxQueue.

Returns a pointer to it, or NULL on allocation failure. */

mxQueue * mxInitQueue(const char * name) {

mxQueue * q;

if (q = mxCalloc(1,sizeof(mxQueue))) {

q->head = q->tail = q->count = 0; q->name = strdup(name);

if (pthread_mutex_init(&(q->gate),NULL)) {

mxPrintf("RCF: %s mutex isn’t. \n", name); mxFree(q);

}

} else {

mxPrintf("RCF: %s queue isn’t.\n");

}

return q;

}

/* Destroys an mxQueue.

Dequeues and destroys any remaining entries, destroys mutex and frees it. */

void mxFinalizeQueue(mxQueue *q) {

if (q) {

mxRequest * i;

77

while (i = mxDequeue(q)) mxDestroyRequest(i); /* Empty the queue */

if (pthread_mutex_destroy(&(q->gate))) /* Destroy mutex */

mxPrintf("RCF: Can’t kill mutex on queue %s.\n", q->name);

mxFree(q);

} else {

mxPrintf("RCF: Destroying a null queue.\n");

}

}

/* Enqueues an mxRequest on an mxQueue. */

void mxEnqueue(mxRequest * this, mxQueue *q) {

if (pthread_mutex_lock(&(q->gate))) {

mxPrintf("RCF: Lock failure on queue %s.\n", q->name);

} else {

if (this) {

int next = (q->tail + 1) % mxMAXRQ; /* New tail position */

if (next != q->head) {

q->contents[q->tail] = this; q->count++; q->tail = next;

this->references++; /* One more reference */

#ifdef _MPX_DEBUG

mxPrintf("[%d] Enqueueing a type %d at #%d in %s.\n",

this->location, this->kind, next, q->name);

#endif

} else {

mxPrintf("RCF: Full %s queue.\n");

}

} else {

mxPrintf("RCF: Enqueueing null request on %s.\n",q->name);

}

pthread_mutex_unlock(&(q->gate));

}

}

/* Dequeues a mxRequest from an mxQueue.

Returns a pointer to the mxRequest, or NULL if the queue is empty. */

mxRequest * mxDequeue(mxQueue *q) {

mxRequest * result = NULL;

if (pthread_mutex_lock(&(q->gate))) {

mxPrintf("RCF: Lock failure on queue %s.\n", q->name);

} else {

if (q->count) { /* If requests in queue */

int next = (q->head + 1) % mxMAXRQ; /* New head of queue */

result = q->contents[q->head]; q->contents[q->head] = NULL;

q->head = next; q->count--; result->references--;

#ifdef _MPX_DEBUG

mxPrintf("[%d] Dequeueing a type %d at #%d from %s.\n",

result->location, result->kind, next, q->name);

#endif

}

pthread_mutex_unlock(&(q->gate));

}

return result;

}

/* Returns the number of mxRequests still in this queue.

Shows an empty queue on failure. */

int mxQueueCount(mxQueue *q) {

78

int result = 0;

if (pthread_mutex_lock(&(q->gate))) {

mxPrintf("RCF: Lock failure on queue %s.\n", q->name);

} else {

result = q->count;

pthread_mutex_unlock(&(q->gate));

}

return result;

}

/* Destroys an mxRequest. If the reference count is positive, it does

nothing. Otherwise, it frees all the fields. */

void mxDestroyRequest(mxRequest * this) {

if (this) {

if (this->references > 0) {

/* mxPrintf("RCF: Destroying a referenced request.\n"); */

} else {

if (this->words) mxFree(this->words);

if (this->object) mxDestroyArray(this->object);

if (this->array) mxDestroyArray(this->array);

mxFree(this);

}

} else {

mxPrintf("RCF: Destroying a null request.\n");

}

}

/* Creates a request with a specified kind, origin and location.

Returns a pointer to that request or NULL on allocation failure. */

mxRequest * mxCreateRequest(int kind, int origin, int here) {

mxRequest * r;

if (r = mxCalloc(1, sizeof(mxRequest))) {

r->object = r->array = NULL; r->words = NULL;

r->origin = origin; r->location = here; r->references = 0;

r->kind = kind; r->status = REQUEST_VALID;

} else {

mxPrintf("RCF: No memory left for a request.\n");

}

return r;

}

/* Creates a magic bullet.

A magic bullet is a request to destroy the root window (handle 0.0).

When a daemon sees this, it is supposed to commit suicide.

Returns a pointer to the bullet, or NULL on allocation failure. */

mxRequest * mxCreateMagicBullet(int here) {

mxRequest * r = mxCreateRequest(DESTROY_REQUEST, here, here);

if (r) r->object = mxCreateScalar(0.0);

return r;

}

/* Returns TRUE if this request is a magic bullet */

int mxIsMagicBullet(mxRequest * this) {

if ((this)&&(this->kind == DESTROY_REQUEST)) {

if (mxGetScalar(this->object)==0.0) return TRUE;

}

return FALSE;

79

}

/* Returns TRUE if this mxRequest’s location matches its’ origin. */

int mxIsLocal(mxRequest * this) {

if (this) {

if (this->location == this->origin) return TRUE;

}

return FALSE;

}

/* Packs and sends an mxRequest via MPI.

The parameters are destination, MPI communicator, mxRequest to send and

the sender’s rank on that communicator, for backward compatibility.

The mxRequest is converted first into an equivalent mxArray, and then

into a binary object, which is sent as a single MPI message. The

mxRequest kind field is taken as the tag for the message. This protocol

only works between processes running on compatible platforms. */

int mxSendRequest(int dest, MPI_Comm comm, mxRequest * this, int src) {

mxArray * box; /* Structure array with the request in it */

void * parcel; /* Structure array packed for shipping */

size_t broadness; /* Size of the parcel */

int code; /* Return code from MPI send */

/* Compile, pack for shipping, and send */

box = mxRequestToStructure(this);

parcel = mxPack(box, &broadness);

code = MPI_Send(parcel, broadness, MPI_BYTE, dest, this->kind, comm);

/* Untangle all the pointers and kill off the copies */

mxFree(parcel); /* Perhaps cache this? */

mxDestroyArray(box); /* All fields are just duplicates */

#ifdef _MPX_DEBUG

mxPrintf("[%d] Request sent in %d bytes.\n", this->location, broadness);

#endif

return code;

}

/* Makes a 1x1 structure array with equivalent fields to a given mxRequest.

The "array", "words", and "object" fields are optional. Returns a pointer

to the resulting mxArray, or NULL on allocation failure. */

mxArray * mxRequestToStructure(mxRequest * this) {

const char * names[mxMAXHDR];/* Fields in structure */

mxArray * values[mxMAXHDR]; /* Values in structure */

mxArray * scalars; /* Scalar values */

double * scdata; /* Its’ real elements */

int nfields, i; /* Number of fields, counter over them */

mxArray * box; /* Structure array with the above in it */

scalars = mxCreateDoubleMatrix(1, mxMAXHDR, mxREAL); /* Scalar fields */

scdata = mxGetPr(scalars);

scdata[0] = (double)(this->kind); scdata[1] = (double)(this->status);

scdata[2] = (double)(this->origin); scdata[3] = this->parent;

names[0] = "scalars"; values[0] = scalars; nfields = 1;

80

#ifdef _MPX_DEBUG

mxPrintf("[%d] Encrypting a type %d.\n", this->location, this->kind);

#endif

if (this->object) { /* Add object handles, if any */

names[nfields] = "object";

values[nfields] = mxDuplicateArray(this->object); nfields++;

#ifdef _MPX_DEBUG

mxPrintf("[%d] Outgoing object is %g.\n", this->location,

mxGetScalar(this->object));

#endif

}

if (this->array) { /* Add values, if any */

names[nfields] = "array";

values[nfields] = mxDuplicateArray(this->array); nfields++;

}

if (this->words) { /* Add prose if any */

names[nfields] = "words";

values[nfields] = mxCreateString(this->words); nfields++;

#ifdef _MPX_DEBUG

mxPrintf("[%d] Outgoing words are %s.\n", this->location, this->words);

#endif

}

box = mxMakeStructure(values, names,nfields);

return box;

}

/* Receives an mxRequest from a given source on an MPI communicator

without blocking. The mxRequest must be sent via mxSendRequest.

If there is a pending message, this function receives and unpacks it.

The request is created with the location supplied in the third parameter.

A pointer to the mxRequest is returned on success, or NULL on failure. */

mxRequest * mxRecvRequest(int source, MPI_Comm comm, int here) {

void * parcel; /* Raw message */

size_t broadness; /* Its’ size */

mxArray * box, * field; /* Unpacked parcel */

double * scalars; /* Scalar fields */

int kind, arePending, s; /* Probe results */

MPI_Status stat; /* Jobbing status indicator */

int origin; /* Origin of the request */

mxRequest * this = NULL; /* The end result */

MPI_Iprobe(source, MPI_ANY_TAG, comm, &arePending, &stat);

if (arePending) {

kind = stat.MPI_TAG; MPI_Get_count(&stat, MPI_BYTE, &s);

broadness = (size_t)s; parcel = mxMalloc(broadness);

MPI_Recv(parcel, s, MPI_BYTE, source, kind, comm, &stat);

box = mxUnpack(parcel); mxFree(parcel); /* Perhaps cache this? */

this = mxStructureToRequest(box, kind, here);

mxDestroyArray(box); /* Providing only copies are destroyed */

#ifdef _MPX_DEBUG

if (this) mxPrintf("[%d] Request received in %d bytes\n", here,broadness);

81

#endif

}

return this;

}

/* Dual to mxRequestToStructure. From the fields of the first cell of a

structure mxArray, it creates an equivalent mxRequest and returns a

pointer to it. The mxRequest is created with the location specified by

the third parameter. */

mxRequest * mxStructureToRequest(mxArray * box, int kind, int here) {

mxRequest * this; /* The end result */

double * scalars; /* The scalar fields */

mxArray *field; /* The tensor fields */

scalars = mxGetPr(mxGetField(box, 0, "scalars"));

this = mxCreateRequest(kind, here, here);

this->status = (int)(scalars[1]); this->origin = (int)(scalars[2]);

this->parent = scalars[3]; this->location = here;

#ifdef _MPX_DEBUG

mxPrintf("[%d] Decrypting a type %d.\n", here, kind);

#endif

if (field = mxGetField(box, 0, "words")) {

this->words = mxArrayToString(field);

#ifdef _MPX_DEBUG

mxPrintf("[%d] Words are %s.\n", here, this->words);

#endif

}

if (field = mxGetField(box, 0, "array")) {

this->array = mxDuplicateArray(field);

}

if (field = mxGetField(box, 0, "object")) {

this->object = mxDuplicateArray(field);

#ifdef _MPX_DEBUG

mxPrintf("[%d] Object is %g.\n", here, mxGetScalar(this->object));

#endif

}

return this;

}

/* Writes an mxRequest to a given file descriptor, usually a pipe.

First the request kind field, then the size of the packed mxRequest, then

the request itself are written. Returns the result of the first write(). */

int mxWriteRequest(mxRequest * this, int pipe) {

mxArray * box; /* Buffer structure */

void * package; /* Jobbing buffer variable */

size_t bigness; /* Elements to write */

ssize_t written; /* Elements actually written */

int kind = this->kind; /* Request tag */

written = write(pipe, (void *)(&kind), sizeof(int)); /* Request */

if (written > 0) { /* If pipe is functional */

box = mxRequestToStructure(this); /* Turn into mxArray */

package = mxPack(box, &bigness); /* Turn mxArray into binary */

82

write(pipe, (void *)(&bigness), sizeof(size_t));/* Write size */

written = write(pipe, package, bigness); /* Write request */

#ifdef _MPX_DEBUG

mxPrintf("Request written in %d/%d bytes.\n", written, bigness);

#endif

mxFree(package); mxDestroyArray(box); /* Cache? */

} else {

mxPrintf("RCF: pipe %d full.\n", pipe);

}

return written;

}

/* Reads an mxRequest from a given file descriptor, usually a pipe.

The mxRequest must have been sent with mxWriteRequest.

The first read() is nonblocking. This function returns a pointer to

a valid mxRequest if one was in the pipe, otherwise NULL. */

mxRequest * mxReadRequest(int pipe, int here) {

mxRequest * this; /* Request under construction */

mxArray * box; /* The wrapping for it */

void * package; /* Jobbing buffer variable */

size_t bigness; /* Elements to write */

int kind, status, origin; /* Request fields */

ssize_t readcount; /* Bytes actually read */

readcount = read(pipe, (void *)(&kind), sizeof(int)); /* Kind of request */

if (readcount > 0) {

readcount = read(pipe, (void *)(&bigness), sizeof(size_t));

if (readcount > 0) {

package = mxMalloc(bigness);

readcount = read(pipe, package, bigness);

if (readcount > 0) {

box = mxUnpack(package); mxFree(package);

this = mxStructureToRequest(box, kind, here);

#ifdef _MPX_DEBUG

mxPrintf("Request read with %d/%d bytes\n", readcount, bigness);

#endif

} else {

mxPrintf("RCF: read() for package returned %d\n", readcount);

}

} else {

mxPrintf("RCF: read() for package size returned %d\n", readcount);

}

} else {

this = NULL; /* No request queued */

if (readcount < 0) {

mxPrintf("RCF: read() for tag returned %d\n", readcount);

}

}

return this;

}

/* Creates a blank mxObject with no callbacks.

83

The parameters are the local handle, the handle at the root node, and

the handle of the parent at the root node, in order. The mxObject created

has those details and no callbacks registered. On success, a pointer to

the mxObject is returned. On failure, NULL is returned. */

mxObject * mxCreateObject(double h, double r, double p) {

mxObject * this;

if (this = mxCalloc(1, sizeof(mxObject))) {

#ifdef _MPX_DEBUG

mxPrintf("[x] Object %g, child of %g, is locally %g. \n", h, p, r);

#endif

this->handle = h; this->rootID = r; this->rootParent = p;

} else {

mxPrintf("RCF: no memory for a new object.\n");

}

return this;

}

/* Destroys an mxObject and frees all components. */

void mxDestroyObject(mxObject * this) {

int i;

if (this) {

for (i=0; i<mxMAXCBACKS; i++) mxFree(this->callbacks[i]);

mxFree(this);

} else {

mxPrintf("RCF: destroying a null object.\n");

}

}

/* Updates a callback of an mxObject.

If a previous callback string is found, it is freed. */

void mxSetObjectCallback(mxObject * this, int which, const char * call) {

if (this) {

#ifdef _MPX_DEBUG

mxPrintf("[x] Callback %d of %g is [%s]\n", which, this->handle, call);

#endif

if (this->callbacks[which]) mxFree(this->callbacks[which]);

this->callbacks[which] = strdup(call);

} else {

mxPrintf("RCF: setting callback of a null object.\n");

}

}

/* Retrieves a callback of an mxObject; returns NULL if none */

const char * mxGetObjectCallback(mxObject * this, int which) {

if (this) {

return this->callbacks[which];

} else {

mxPrintf("RCF: getting callback of a null object.\n"); return NULL;

}

}

/* Sets the status field of an mxObject */

void mxSetObjectStatus(mxObject * this, int quo) {

if (this) {

this->status = quo;

} else {

mxPrintf("RCF: setting status of a null object.\n");

}

84

}

/* Returns the status field of an mxObject, or STATUS_INVALID on failure */

int mxGetObjectStatus(mxObject * this) {

if (this) {

return this->status;

} else {

mxPrintf("RCF: getting status of a null object.\n");

return STATUS_INVALID;

}

}

/* Creates an empty mxDictionary. Returns a pointer to it on success, or

NULL on failure. Requires a name; this is used in debugging traces.*/

mxDictionary * mxCreateDictionary(char * name) {

mxDictionary * d;

if (d = mxCalloc(1, sizeof(mxDictionary))) {

d->name = strdup(name); d->start = NULL; d->count = 0;

d->gate = mxMalloc(sizeof(pthread_mutex_t));

if (pthread_mutex_init(d->gate,NULL)) {

mxPrintf("RCF: lock for %s dictionary isn’t.\n", name);

mxFree(d->gate); mxFree(d); d = NULL;

}

} else {

mxPrintf("RCF: no memory for %s dictionary.\n");

}

return d;

}

/* Destroys an mxDictionary. Any contents are also destroyed. */

void mxDestroyDictionary(mxDictionary * victim) {

mxObject * this;

if (victim) {

if (pthread_mutex_lock(victim->gate)) {

mxPrintf("RCF: lock failure on dictionary %s.\n", victim->name);

} else {

while (this = victim->start) {

victim->start = victim->start->next; mxDestroyObject(this);

}

pthread_mutex_destroy(victim->gate); mxFree(victim->gate);

mxFree(victim->name); mxFree(victim);

}

} else {

mxPrintf("RCF: destroy a null dictionary.\n");

}

}

/* Adds an object to an mxDictionary */ /* FIXME: FROM HERE */

void mxAddObject(mxDictionary * those, mxObject * this) {

mxObject * o;

if (those) {

if (pthread_mutex_lock(those->gate)) {

mxPrintf("RCF: lock failure on dictionary %s.\n", those->name);

} else {

if (those->start) {

those->start->previous = this; this->next = those->start;

those->start = this; those->count++;

} else {

85

those->start = this; this->next = this->previous = NULL;

those->count = 1;

}

pthread_mutex_unlock(those->gate);

}

} else {

mxPrintf("RCF: adding an entry to a null dictionary.\n");

}

}

/* Remove an object from an mxDictionary */

void mxRemoveObject(mxDictionary * those, mxObject * this) {

if (those) {

if (pthread_mutex_lock(those->gate)) {

mxPrintf("RCF: lock failure on dictionary %s.\n", those->name);

} else {

if (this->next) this->next->previous = this->previous;

if (this->previous) this->previous->next = this->next;

else those->start = this->next;

this->next = this->previous = NULL;

those->count--;

pthread_mutex_unlock(those->gate);

}

} else {

mxPrintf("RCF: removing an entry from a null dictionary.\n");

}

}

/* Return first object with that root ID in that dictionary */

mxObject * mxGetObjectByRoot(mxDictionary * those, double r) {

mxObject * this;

mxObject * result = NULL;

if (those) {

if (pthread_mutex_lock(those->gate)) {

mxPrintf("RCF: lock failure on dictionary %s.\n", those->name);

} else {

this = those->start;

while (this) {

if (this->rootID == r) {

#ifdef _MPX_DEBUG

mxPrintf("[x] Found object with root %g.\n", r);

#endif

result = this; break;

} else {

this = this->next;

}

}

pthread_mutex_unlock(those->gate);

}

} else {

mxPrintf("RCF: searching a null dictionary.\n");

}

return result;

}

/* Return first object with that parent in that dictionary */

mxObject * mxGetObjectByParent(mxDictionary * those, double p) {

86

mxObject * this;

mxObject * result = NULL;

if (those) {

if (pthread_mutex_lock(those->gate)) {

mxPrintf("RCF: lock failure on dictionary %s.\n", those->name);

} else {

this = those->start;

while (this) {

if (this->rootParent == p) {

result = this; break;

} else {

this = this->next;

}

}

pthread_mutex_unlock(those->gate);

}

} else {

mxPrintf("RCF: searching a null dictionary.\n");

}

return result;

}

/* Return first object with that local handle in that dictionary */

mxObject * mxGetObjectByHandle(mxDictionary * those, double h) {

mxObject * this;

mxObject * result = NULL;

if (those) {

if (pthread_mutex_lock(those->gate)) {

mxPrintf("RCF: lock failure on dictionary %s.\n", those->name);

} else {

this = those->start;

while (this) {

if (this->handle == h) {

result = this; break;

} else {

this = this->next;

}

}

pthread_mutex_unlock(those->gate);

}

} else {

mxPrintf("RCF: searching a null dictionary.\n");

}

return result;

}

/* List a dictionary - diagnostic function */

void mxListDictionary(mxDictionary * those, int here) {

int i;

mxObject * c;

if (those) {

if (pthread_mutex_lock(those->gate)) {

mxPrintf("RCF: lock failure on dictionary %s.\n", those->name);

} else {

mxPrintf("\n=== %s on node %d ===\n", those->name, here);

c = those->start;

87

while (c) {

mxPrintf("%.6f, child of %.6f, locally %.6f\n",

c->rootID, c->rootParent, c->handle);

c = c->next;

}

pthread_mutex_unlock(those->gate);

}

} else {

mxPrintf("RCF: listing a null dictionary.\n");

}

}

/* Take a vector of root handles and return a vector of local handles */

mxArray * mxGetLocalHandles(const mxArray * handles, mxDictionary * those) {

if (those) {

if (handles) {

mxArray * newh = mxDuplicateArray(handles); /* End result */

double * local = mxGetPr(newh); /* Adjusted handles */

double * remote = mxGetPr(handles); /* Original handles */

int numh = mxGetNumberOfElements(handles); /* How many */

int i; /* Jobbing counter */

for (i=0; i<numh; i++) {

if (remote[i] == 0.0) {

local[i] = 0.0;

} else {

mxObject * this = mxGetObjectByRoot(those,remote[i]);

if (this) {

local[i] = this->handle;

} else {

mxPrintf("Invalid lookup: %d.\n", remote[i]);

local[i] = INVALID_HANDLE;

}

}

}

return newh;

} else {

return NULL;

}

} else {

mxPrintf("RCF: Adjusting using a null dictionary?\n");

return mxDuplicateArray(handles);

}

}

/* Take a vector of local handles and return a vector of root handles */

mxArray * mxGetRootHandles(const mxArray * handles, mxDictionary * those) {

if (those) {

if (handles) {

mxArray * newh = mxDuplicateArray(handles); /* End result */

double * local = mxGetPr(handles); /* Original handles */

double * remote = mxGetPr(newh); /* Adjusted handles */

int numh = mxGetNumberOfElements(handles); /* How many */

int i; /* Jobbing counter */

for (i=0; i<numh; i++) {

if (local[i] == 0.0) {

remote[i] = 0.0;

88

} else {

mxObject * this = mxGetObjectByHandle(those,local[i]);

if (this) {

remote[i] = this->rootID;

} else {

mxPrintf("RCF: invalid lookup %d.\n", local[i]);

remote[i] = INVALID_HANDLE;

}

}

}

return newh;

} else {

return NULL;

}

} else {

mxPrintf("RCF: Adjusting using a null dictionary?\n");

return mxDuplicateArray(handles);

}

}

/* See if the first of a vector of handles exists in a dictionary */

int mxExists(const mxArray * handles, mxDictionary * those) {

mxObject * this = NULL;

double h;

int result = FALSE;

if (handles) {

h = mxGetScalar(handles);

if (those) {

this = mxGetObjectByRoot(those, h);

if (this) result = TRUE;

}

}

return result;

}

/* The names of the callbacks */

const char * cnames[mxMAXCBACKS] = {

"invalid", "Callback", "ButtonUpFcn", "ButtonDwnFcn",

"MoveFcn", "DeleteFcn", "ResizeFcn", "ChangeFcn"

} ;

/* Updates an mxDictionary in light of a successful mxRequest.

If an mxRequest has been successfully evaluated using engRequest,

or has been received from a MEX-file (where presumably it was

evaluated by the creating function), this function should be called

exactly once. The third parameter points to a Matlab array containing

a vector of handles. This array should have been created with

mxGetLocalHandles; passing it here is merely an attempt to avoid a

redundant dictionary lookup. */

void mxUpdateDictionary(mxDictionary * those, mxRequest * r, mxArray * h) {

int nl, i, j; /* Number of objects, counters */

double * rlist; /* List of remote handles affected */

double * llist; /* List of local equivalents */

mxObject * this; /* Jobbing graphics object */

mxArray * that; /* Jobbing mxArray */

89

if (r == NULL) return; /* Reality check */

#ifdef _MPX_DEBUG

mxPrintf("[%d] Updating dictionary.\n", r->location);

#endif

if (h) {

llist = mxGetPr(h); /* Get local handle list */

#ifdef _MPX_DEBUG

mxPrintf("[%d] Local handles start with %g.\n", r->location,llist[0]) ;

#endif

}

if (r->object) {

rlist = mxGetPr(r->object); /* Get remote handle list */

#ifdef _MPX_DEBUG

mxPrintf("[%d] Remote handles start with %g.\n", r->location,rlist[0]);

#endif

}

switch(r->kind) {

case NO_REQUEST: break; /* Er...nothing. */

case SET_REQUEST: /* Update callbacks if any */

for (i=0; i<mxMAXCBACKS; i++) {

if (that = mxGetField(r->array, 0, cnames[i])) {

for (j=0; j<nl; j++) {

if (this = mxGetObjectByRoot(those, rlist[j])) {

char * cb = mxArrayToString(that);

mxSetObjectCallback(this, i, cb); mxFree(cb);

}

}

}

}

break;

case GET_REQUEST: break; /* No response needed */

case CREATE_REQUEST: /* Add new objects */

if (nl = mxGetNumberOfElements(h)) { /* If objects created... */

for (i=0; i<nl; i++) { /* ...add each to the records */

this = mxCreateObject(llist[i], rlist[i], r->parent);

for (j=0; j<mxMAXCBACKS; j++) { /* and callbacks */

if (that = mxGetField(r->array, 0, cnames[j])) {

char * cb = mxArrayToString(that);

mxSetObjectCallback(this, j, cb); mxFree(cb);

}

}

mxAddObject(those, this);

#ifdef _MPX_DEBUG

mxPrintf("[%d] Adding %g to %s.\n", r->location, this->handle,

those->name);

#endif

}

}

break;

case DESTROY_REQUEST: /* Remove the corpses */

if (nl = mxGetNumberOfElements(h)) { /* If objects destroyed */

for (i=0; i<nl; i++) {

if (this = mxGetObjectByRoot(those, rlist[i])) {

90

int isFigure = (this->rootParent == 0.0);

mxRemoveObject(those, this); mxDestroyObject(this);

/* Remove children, and any grandchildren */

while (this = mxGetObjectByParent(those, rlist[i])) {

if (isFigure) { /* Grandchildren present; remove */

mxObject * kid;

while (kid=mxGetObjectByParent(those,this->rootID)) {

mxRemoveObject(those, kid); mxDestroyObject(kid);

}

}

mxRemoveObject(those, this); mxDestroyObject(this);

}

}

}

}

break;

case CALLBACK_REQUEST: break; /* No response needed */

case EVALUATE_REQUEST: break; /* No response needed */

default: ; /* Silently ignore others */

}

}

/* Adjusts a structure array of properties for this node’s context.

The first parameter is a structure array of properties which was created

in the root context. The return value is an adjusted duplicate.

Values which are graphics handles are replaced with local handles.

Callback strings are adjusted to the appropriate stubs.

The second parameter is the dictionary used for object lookups. */

mxArray * mxCensorProperties(const mxArray * old, mxDictionary * those) {

mxArray * value; /* An old value */

char command[mxMAXCMD]; /* A new callback */

mxArray * censored; /* A new value */

int i; /* Jobbing counter */

mxArray * result; /* The end result */

if (result = mxDuplicateArray(old)) {

/* Check through callbacks */

for (i=0; i<mxMAXCBACKS; i++) {

if (value = mxGetField(result, 0, cnames[i])) {

if (mxIsEmpty(value)) continue;

if (i == CALL_DELETE) {

sprintf(command, "Callback(%d,gco); Closereq;", i);

} else {

sprintf(command, "Callback(%d,gco);", i);

}

censored = mxCreateString(command); /* Create new value */

mxSetField(result, 0, cnames[i], censored); /* Swap it in */

mxDestroyArray(value); /* Destroy old value */

}

}

/* Check through handles */

if (value = mxGetField(result, 0, "parent")) {

mxSetField(result, 0, "parent", mxGetLocalHandles(value, those));

mxDestroyArray(value); /* Swap in local handles for parent */

91

}

if (value = mxGetField(result, 0, "children")) {

mxSetField(result, 0, "children", mxGetLocalHandles(value, those));

mxDestroyArray(value); /* Swap in local handles for children */

}

/* FIXME: what of varying case ? */

} else {

mxPrintf("RCF: Attempting to censor a null array.\n");

}

return result;

}

#ifdef MATLAB_MEX_FILE

/* MEX-file argument parsers:

Each of these takes pointers to the arguments, a current argument cursor,

and the number of properties so far set. If the arguments under the

cursor support it, they add property names to the names[] list, and the

property values in the corresponding places in the values[] list, then

update the cursor and number of properties and return TRUE. If not, they

return FALSE. The result can be fed into the mxMakeStructure function

to create an array field for an mxRequest. */

/* One generic property/value pair */

int mexParseOne(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor + 1) < nrhs) { /* If sufficient arguments left... */

if (mxIsChar(prhs[*cursor])) { /* ...and the next one is a property */

names[*nfields] = mxArrayToString(prhs[*cursor]); (*cursor)++;

values[*nfields] = mxDuplicateArray(prhs[*cursor]); (*cursor)++;

(*nfields)++; return TRUE;

}

}

return FALSE;

}

/* One color data matrix */

int mexParseC(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor) < nrhs) { /* If sufficient arguments left... */

if (mxIsNumeric(prhs[*cursor])){

names[*nfields]="CData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++; return TRUE;

}

}

return FALSE;

}

/* Coordinates in two dimensions */

int mexParseXY(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor + 1) < nrhs) { /* If sufficient arguments left... */

if (mxIsNumeric(prhs[*cursor]) /* ...all numbers */

&& mxIsNumeric(prhs[(*cursor)+1])){

names[*nfields]="XData";

92

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="YData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

return TRUE;

}

}

return FALSE;

}

/* Coordinates in two dimensions and color data */

int mexParseXYC(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor + 2) < nrhs) { /* If sufficient arguments left... */

if (mxIsNumeric(prhs[*cursor]) /* ...all numbers */

&& mxIsNumeric(prhs[(*cursor)+1])

&& mxIsNumeric(prhs[(*cursor)+2])){

names[*nfields]="XData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="YData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="CData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

return TRUE;

}

}

return FALSE;

}

/* Coordinates in three dimensions */

int mexParseXYZ(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor + 2) < nrhs) { /* If sufficient arguments left... */

if (mxIsNumeric(prhs[*cursor]) /* ...all numbers */

&& mxIsNumeric(prhs[(*cursor)+1])

&& mxIsNumeric(prhs[(*cursor)+2])){

names[*nfields]="XData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="YData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="ZData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

return TRUE;

}

}

return FALSE;

}

/* Coordinates in three dimensions, plus color data */

int mexParseXYZC(int nrhs, const mxArray * prhs[], int *cursor,

93

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor + 3) < nrhs) { /* If sufficient arguments left... */

if (mxIsNumeric(prhs[*cursor]) /* ...all numbers */

&& mxIsNumeric(prhs[(*cursor)+1])

&& mxIsNumeric(prhs[(*cursor)+2])

&& mxIsNumeric(prhs[(*cursor)+3])){

names[*nfields]="XData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="YData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="ZData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

names[*nfields]="CData";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor)++; (*nfields)++;

return TRUE;

}

}

return FALSE;

}

/* A point in two dimensions and a string to place there */

int mexParseXYT(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor + 2) < nrhs) { /* If sufficient arguments left... */

if (mxIsNumeric(prhs[*cursor]) /* ...a number */

&& mxIsNumeric(prhs[(*cursor)+1]) /* ...a number */

&& mxIsChar(prhs[(*cursor)+2])){ /* ...a string */

mxArray * where = mxCreateDoubleMatrix(1,3,mxREAL);

double * coords = mxGetPr(where);

names[*nfields]="Position"; values[*nfields]=where;

coords[0] = mxGetScalar(prhs[*cursor]); (*cursor)++;

coords[1] = mxGetScalar(prhs[*cursor]); (*cursor)++;

coords[2] = 0.0; (*nfields)++; /* Z coordinate implied */

names[*nfields]="String";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor++); (*nfields)++;

return TRUE;

}

}

return FALSE;

}

/* A point in three dimensions and a string to place there */

int mexParseXYZT(int nrhs, const mxArray * prhs[], int *cursor,

int *nfields, mxArray * values[], const char * names[]) {

if ((*cursor + 3) < nrhs) { /* If sufficient arguments left... */

if (mxIsNumeric(prhs[*cursor]) /* ...a number */

&& mxIsNumeric(prhs[(*cursor)+1]) /* ...a number */

&& mxIsNumeric(prhs[(*cursor)+2]) /* ...a number */

&& mxIsChar(prhs[(*cursor)+3])){ /* ...a string */

mxArray * where = mxCreateDoubleMatrix(1,3,mxREAL);

double * coords = mxGetPr(where);

94

names[*nfields]="Position"; values[*nfields]=where;

coords[0] = mxGetScalar(prhs[*cursor]); (*cursor)++;

coords[1] = mxGetScalar(prhs[*cursor]); (*cursor)++;

coords[2] = mxGetScalar(prhs[*cursor]); (*cursor)++; (*nfields)++;

names[*nfields]="String";

values[*nfields]=mxDuplicateArray(prhs[*cursor]);

(*cursor++); (*nfields)++;

return TRUE;

}

}

return FALSE;

}

#else

/* Requests something of a Matlab engine.

This function parses the mxRequest pointed to by the second argument, and

issues commands to the Matlab engine pointed to by the first argument.

The third argument is a dictionary of objects in this engine.

Calls mxUpdateDictionary to record the update as appropriate.

Returns a copy of the output from the commands. */

char * engRequest(Engine * e, mxRequest * this, mxDictionary * those) {

mxObject * that; /* Object being pitilessly dissected */

mxArray * local = NULL; /* Local addresses for object(s) */

mxArray * foo, * bar, *baz; /* Perhaps a jobbing mxArray */

char output[mxMAXOUT]; /* Perhaps an output buffer */

char command[mxMAXCMD]; /* Perhaps a command */

char * result = NULL; /* Final output from engine */

/* Zero an output buffer and assign it to this engine */

memset(output, 0, mxMAXOUT); engOutputBuffer(e, output, mxMAXOUT);

/* Examine the request */

switch(this->kind) {

case NO_REQUEST: /* Null request - reserved for future use */

mxPrintf("Something prodded me.\n"); break;

case SET_REQUEST: /* Set the properties of local objects */

/* Get local handles and put them in the workspace */

local = mxGetLocalHandles(this->object, those);

mxSetName(local, "foo_"); engPutArray(e, local);

/* Set properties using a structure array of values */

bar = mxCensorProperties(this->array, those);

mxSetName(bar, "bar_"); engPutArray(e, bar); mxDestroyArray(bar);

engEvalString(e, "set(foo_,bar_); clear foo_ bar_;");

break;

case GET_REQUEST: /* Get a property of a local object */

/* Do nothing at all because it’s been handled by the root */

mxPrintf("Inspecting, O Master!\n"); break;

case CREATE_REQUEST: /* Create a copy of an object */

bar = mxCreateScalar(this->parent); /* Get local parent handle */

foo = mxGetLocalHandles(bar, those); mxDestroyArray(bar);

mxSetName(foo, "foo_"); engPutArray(e, foo); /* Send to engine */

sprintf(command, "bar_ = %s(’Parent’,foo_);", this->words);

#ifdef _MPX_DEBUG

mxPrintf("[%d] Command: %s\n", this->location,command);

95

#endif

engEvalString(e, command); bar = engGetArray(e, "bar_"); /* Create */

if (mxIsEmpty(bar)) { /* Failure */

mxPrintf("[%d] RCF: Creation of %s failed\n",

this->location, this->words);

} else { /* Success; initialize */

if (this->array) {

baz = mxCensorProperties(this->array, those);

mxSetName(baz, "baz_"); engPutArray(e, baz);

engEvalString(e, "set(bar_,baz_); clear bar_ baz_;");

mxDestroyArray(baz);

}

local = bar; /* Save local handles for records */

}

break;

case DESTROY_REQUEST: /* Destroy something that isn’t the root */

/* Get local handles, delete local objects */

local = mxGetLocalHandles(this->object, those);

mxSetName(local, "foo_"); engPutArray(e, local);

engEvalString(e, "delete(foo_); clear foo_;");

break;

case CALLBACK_REQUEST: /* Evaluate a callback */

/* Update GUI component’s value */

if (that = mxGetObjectByRoot(those, mxGetScalar(this->object))) {

foo = mxCreateScalar(that->handle); mxSetName(foo, "foo_");

} else {

mxPrintf("[%d] RCF: There is no %g.\n", this->location,

mxGetScalar(this->object));

break;

}

bar = mxDuplicateArray(this->array); mxSetName(bar, "bar_");

engPutArray(e, foo); engPutArray(e,bar);

engEvalString(e, "set(foo_, ’Value’, bar_); clear foo_ bar_;");

/* Execute callback if at the root */

if (this->location == ROOT) {

strcpy(command, mxGetObjectCallback(that, this->status));

#ifdef _MPX_DEBUG

mxPrintf("[%d] Executing [%s].\n", this->location, command);

#endif

engEvalString(e, command);

}

break;

case EVALUATE_REQUEST: /* Execute an arbitrary Matlab expression */

engEvalString(e, this->words); break;

default: /* The request is in error */

mxPrintf("RCF: A request of type %d?\n", this->kind);

}

if (local) mxUpdateDictionary(those, this, local); /* Update records */

if (local) mxDestroyArray(local); /* Destroy local handles */

return strdup(output); /* Return output from Matlab engine */

}

#endif

96

A.2 The legion daemon

legion.c

/*

** file: legion.c

**

** purpose: implementation for the Concurrent Matlab legion daemon

**

** created: 3/2000 by AHD

*/

#include "mpx.h"

/* My current rank, nodes in current communicator */

int me, nodes;

/* Standing queues of requests */

mxQueue * outQ; /* Outbound messages */

mxQueue * inQ; /* Inbound messages */

/* Standing dictionary of graphics objects */

mxDictionary * objects;

/* Mutex to protect stdio */

pthread_mutex_t stdioMutex;

/* And its’ constructor and destructor */

void stdInit(void) { pthread_mutex_init(&stdioMutex, NULL); }

void stdFinalize(void) { pthread_mutex_destroy(&stdioMutex); }

/* Threads spawned by main() */

pthread_t keythread, engthread, tapthread;

/* Termination flag - synchronized between threads */

int continuing;

pthread_mutex_t contMutex;

/* Set up continuing flag - not for call by a thread */

int contInit(void) {

pthread_mutex_init(&contMutex, NULL); continuing = TRUE;

}

/* Set continuing flag */

void contSet(int newValue) {

if (pthread_mutex_lock(&contMutex)) {

mxPrintf("Reality check failed - cannot set continuing flag.\n");

} else {

continuing = newValue; pthread_mutex_unlock(&contMutex);

}

}

/* Query continuing flag */

int contQuery(void) {

int result = FALSE;

97

if (pthread_mutex_lock(&contMutex)) {

mxPrintf("Reality check failed - cannot query continuing flag.\n");

} else {

result = continuing; pthread_mutex_unlock(&contMutex);

}

return result;

}

/* Take down continuing flag - not for call by a thread */

void contFinalize(void) {

if (pthread_mutex_destroy(&contMutex)) {

mxPrintf("Reality check failed - continuing mutex unkillable.\n");

}

}

/* Thread to consume entries in the local queue (output to stdout) */

void * engine(void * eng) {

int stillGoing = TRUE; /* Local copy of continuing */

mxRequest * this; /* The current request */

char * output; /* Its’ result */

mxObject *that, *thother; /* Object(s) under scrutiny */

mxArray * answer; /* Result of a Matlab expression */

while (stillGoing) { /* While process still alive... */

while (this = mxDequeue(inQ)) { /* While requests queued ... */

if (mxIsMagicBullet(this)) {

contSet(FALSE); /* Signal other threads to commit suicide */

stillGoing = FALSE; /* Likewise here */

} else {

output = engRequest(eng, this, objects); /* Answer request */

if (this->kind == EVALUATE_REQUEST) {

/* Print Matlab’s response, skipping the prompt if present */

pthread_mutex_lock(&stdioMutex);

if (strncmp(output,">>",2)) mxPrintf("%s", output);

else mxPrintf("%s", output+2);

pthread_mutex_unlock(&stdioMutex);

/* If this is a request from the keyboard, disappear it */

if (mxIsLocal(this)) {

mxDestroyRequest(this); this = NULL;

}

}

mxFree(output); /* Dispose of output buffer */

}

if (this) mxEnqueue(this, outQ); /* Pass on to next node */

#ifdef _MPX_DEBUG

mxListDictionary(objects, me);

#endif

}

}

return NULL;

}

/* Thread to handle requests from the local pipe */

void * tap(void * path) {

98

int state = WORKING;

int querent, dummy;

mxRequest * this;

mxObject * that;

mxArray * handles;

/* Create and open FIFO, supplying name if necessary */

if (path == NULL) path = "/tmp/legion.pipe";

mkfifo(path, S_IRUSR|S_IWUSR|S_IXUSR);

querent = open(path, O_RDONLY);

if (querent > 0) {

state = WORKING;

} else {

state = STOPPED;

}

/* Read requests from the FIFO and process them */

/* Busy wait could be replaced with SIGIO handling, but not yet */

while (state != STOPPED) {

if (this = mxReadRequest(querent, me)) {

this->origin = me; /* New request, originated from here */

switch(this->kind) {

case NO_REQUEST:

mxEnqueue(this, outQ); break;

case SET_REQUEST:

handles = mxGetLocalHandles(this->object, objects);

mxUpdateDictionary(objects, this, handles);

mxDestroyArray(handles); mxEnqueue(this, outQ); break;

case GET_REQUEST:

mxEnqueue(this, outQ); break;

case CREATE_REQUEST:

if (mxExists(this->object, objects)) {

mxDestroyRequest(this);

#ifdef _MPX_DEBUG

mxPrintf("[%d] already has %s %g.\n", me, this->words,

mxGetScalar(this->object));

#endif

} else {

handles = mxDuplicateArray(this->object);

mxUpdateDictionary(objects, this, handles);

mxDestroyArray(handles); mxEnqueue(this, outQ);

}

break;

case DESTROY_REQUEST:

handles = mxGetLocalHandles(this->object, objects);

mxUpdateDictionary(objects, this, handles);

mxDestroyArray(handles); mxEnqueue(this, outQ); break;

case CALLBACK_REQUEST: /* Callback */

#ifdef _MPX_DEBUG

mxPrintf("[%d] Callback %d of object %g activated.\n",

this->location, this->status, mxGetScalar(this->object));

#endif

if (me != ROOT) {

/* Normalize handles and send around the ring */

99

handles = mxGetRootHandles(this->object, objects);

mxDestroyArray(this->object); this->object = handles;

mxEnqueue(this, outQ);

} else {

/* Run it past the local engine, first */

mxEnqueue(this, inQ);

}

break;

case EVALUATE_REQUEST:

mxEnqueue(this, outQ); break;

default:

mxPrintf("RCF - request for %d.\n", this->kind);

mxDestroyRequest(this); this = NULL;

}

}

if (contQuery() == TRUE) {

state = WORKING;

pthread_yield();

} else {

state = STOPPED;

}

}

/* Clean up */

close(querent);

remove(path);

return NULL;

}

/* TRUE if all the characters in the string are whitespace */

int isempty(const char * guinea) {

char yes = TRUE;

while (*guinea && yes) yes = isspace(*(guinea++)) && yes;

return yes;

}

/* TRUE if the first four characters in the string are "quit" */

int isquit(const char * guinea) {

return (strncmp(guinea, "quit",4)==0);

}

/* Thread to feed input from a stream into the local queue */

void * keyboard(void * stream) {

char input[mxMAXCMD]; /* Input buffer */

char * prompt = "[?] "; /* Prompt string */

mxRequest * this; /* Current request */

int stillGoing = TRUE; /* Local termination flag */

while (stillGoing) {

pthread_mutex_lock(&stdioMutex);

fprintf(stdout, prompt); fgets(input, mxMAXCMD, stream);

if (isempty(input)) {

/* Don’t do anything - this is an empty command */

} else if (isquit(input)) { /* Shut down */

100

mxEnqueue(mxCreateMagicBullet(me),inQ);

stillGoing = FALSE;

} else { /* Matlab command - request evaluation */

this = mxCreateRequest(EVALUATE_REQUEST, me, me);

this->words = strdup(input);

mxEnqueue(this, inQ);

}

pthread_mutex_unlock(&stdioMutex);

pthread_yield();

}

return NULL;

}

/* Main thread; talks to other processes, administers other threads */

int main(int argc, char *argv[]) {

Engine * e; /* Matlab engine for this daemon */

char * engineOpener = "/opt/bin/matlab"; /* command to get one */

pthread_attr_t threadkind; /* their attributes */

MPI_Comm comm=MPI_COMM_WORLD; /* all-nodes intracommunicator */

int left, right; /* next, previous neighbours */

mxRequest * this; /* current message */

int stillGoing = TRUE; /* local termination flag */

int state = WORKING; /* message passing state */

MPI_Init(&argc, &argv);

MPI_Comm_rank(comm, &me); MPI_Comm_size(comm, &nodes);

left = (me+1) % nodes; right = (me + nodes -1) % nodes;

#ifdef _MPX_DEBUG

mxPrintf("I am daemon %d, O Master. [%d,%d]\n", me, left, right);

#endif

if (e = engOpen(engineOpener)) {

/* Initialize queues, mutexes, and threads */

contInit(); /* Arm termination flag */

outQ = mxInitQueue("outgoing"); /* Set up outbound message queue */

inQ = mxInitQueue("local"); /* Set up local message queue */

stdInit(); /* Arm standard I/O mutex */

objects = mxCreateDictionary("objects"); /* Set up object dictionary */

pthread_attr_init(&threadkind); /* Threads created attached */

pthread_attr_setdetachstate(&threadkind, PTHREAD_CREATE_UNDETACHED);

pthread_create(&engthread, &threadkind, engine, e);

pthread_create(&tapthread, &threadkind, tap, NULL);

if (me == ROOT) pthread_create(&keythread, &threadkind, keyboard, stdin);

/* Talk to other processes until a magic bullet hits you */

while (state != STOPPED) {

/* while there are messages from the right, receive them */

if (this = mxRecvRequest(right, MPI_COMM_WORLD, me)) {

if (state == WORKING) {

if (mxIsLocal(this)) {

mxDestroyRequest(this);

} else {

mxEnqueue(this, inQ);

}

} else if (state == LISTENING) {

if (mxIsMagicBullet(this)) {

101

#ifdef _MPX_DEBUG

mxPrintf("[%d] They got me, boss!\n", this->location);

#endif

state = STOPPED;

} else {

mxDestroyRequest(this);

}

}

}

/* while there are outgoing messages, send them to the left */

if ((state == WORKING) && (this = mxDequeue(outQ))) {

if (mxIsMagicBullet(this)) {

if (mxIsLocal(this)) {

state = LISTENING;

} else {

state = STOPPED;

}

#ifdef _MPX_DEBUG

mxPrintf("[%d] Sending bullet.\n", this->location);

#endif

mxSendRequest(left, comm, this, me);

} else {

#ifdef _MPX_DEBUG

mxPrintf("[%d] Sending packet.\n", this->location);

#endif

mxSendRequest(left, comm, this, me);

}

}

pthread_yield();

}

/* Wait for other threads to terminate */

if (me == ROOT) {

pthread_join(keythread, NULL);

#ifdef _MPX_DEBUG

mxPrintf("[%d] Keyboard down.\n", me);

#endif

}

pthread_join(engthread, NULL);

#ifdef _MPX_DEBUG

mxPrintf("[%d] Engine down.\n", me);

#endif

#ifdef THIS_SECTION_DYKED_OUT

pthread_join(tapthread, NULL);

mxPrintf("[%d] Pipe down.\n", me);

#endif

/* Tidy up */

mxDestroyDictionary(objects); /* Clean up object dictionary */

mxFinalizeQueue(outQ); /* Shut down outbound message queue */

mxFinalizeQueue(inQ); /* Shut down local request queue */

stdFinalize(); /* Disarm the stdio mutex */

contFinalize(); /* Disarm global termination flag */

engClose(e); /* Lose the Matlab engine */

MPI_Finalize(); /* Shut down the message passing */

} else {

102

MPI_Abort(MPI_COMM_WORLD); /* Infrastructure failure: messy abort! */

}

}

A.3 The stubs

These listings compile into MEX-files for direct use in manipulating glyphs.

Their functions are described in section 3.2.3.

Constructors

Below are a representative sampling of the constructor methods used in Con-

current Matlab over MPI. There are as many again not shown, which are of

exactly the same pattern.

Figure window

/* MEX-file to implement the Figure function */

#include "mpx.h"

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

char * path = "/tmp/legion.pipe"; /* Its’ name */

int result; /* Jobbing status variable */

mxArray * handle[1]; /* Figure being created */

double h; /* Its’ handle */

int cursor; /* Current argument being parsed */

int n = 0; /* Current number of initial properties */

const char * names[256]; /* Property names */

mxArray * values[256]; /* Property values */

mxArray * properties = NULL; /* A structure containing them */

mxRequest * missive = NULL; /* Message to the daemon */

mexSetTrapFlag(TRUE); /* Errors trap here */

/* Call constructor and get figure handle */

result = mexCallMATLAB(1, handle, nrhs, (mxArray **)prhs, "figure");

if (result) {

printf("Cannot create this figure.\n");

} else {

103

if (nlhs) plhs[0] = handle[0]; /* Pass back handle to caller */

/* Send a creation request for this figure */

pipeline = open(path, O_WRONLY); /* Blocking call */

if (pipeline > 0) {

if (nrhs > 2) { /* Properties need setting, too */

cursor = nrhs % 2; /* Skip handle if first argument */

do {

result = mexParseOne(nrhs, prhs, &cursor, &n, values, names);

} while (result);

if (n) properties = mxMakeStructure(values, names, n);

if (properties) {

#ifdef _MPX_DEBUG

mxPrintf("Properties! Yay! \n");

#endif

}

}

missive = mxCreateRequest(CREATE_REQUEST, ROOT, ROOT);

missive->object = mxDuplicateArray(handle[0]);

missive->parent = 0.0;

missive->words = "figure"; missive->array = properties;

mxWriteRequest(missive, pipeline);

/* Rely on MATLAB to clean up dynamically allocated memory */

close(pipeline);

} else {

mexPrintf("Reality check failed: cannot open %s.\n", path);

}

}

}

Set of plot axes

/* MEX-file to implement the Axes function */

#include "mpx.h"

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

char * path = "/tmp/legion.pipe"; /* Its’ name */

mxArray * answer[1]; /* Jobbing answer */

int result; /* Jobbing status variable */

mxArray *h, *p; /* Handles of child and parent */

mxRequest * prelude; /* Creation request for parent figure */

mxRequest * missive; /* Creation request for child axes */

int cursor; /* Current argument being parsed */

int nfields; /* Number of properties set to date */

mxArray * values[256]; /* Property values */

const char * names[256]; /* Property names */

/* Call constructor */

104

mexSetTrapFlag(TRUE); /* Errors trap here */

result = mexCallMATLAB(1, answer, nrhs, (mxArray **)prhs, "axes");

if (result) {

printf("Cannot create these axes.\n");

} else {

h = answer[0]; /* Acquire axes handle */

if (nlhs) plhs[0] = answer[0]; /* Pass back handle to caller */

p = mxDuplicateArray(mexGet(mxGetScalar(h),"Parent"));/* Acquire parent */

pipeline = open(path, O_WRONLY); /* Open pipe for transmission */

if (pipeline > 0) {

/* Create parent figure, if necessary */

prelude = mxCreateRequest(CREATE_REQUEST, 0, 0);

prelude->parent = 0.0; prelude->words = "figure";

prelude->object = p; mxWriteRequest(prelude, pipeline);

/* Create axes */

missive = mxCreateRequest(CREATE_REQUEST, 0, 0);

missive->parent = mxGetScalar(p); missive->words = "axes";

missive->object = mxDuplicateArray(h);

if (nrhs > 2) { /* Get additional properties if any */

#ifdef _MPX_DEBUG

mxPrintf("Properties! Yay!\n");

#endif

cursor = nrhs % 2; /* Skip handle if it was first */

nfields = 0;

while (mexParseOne(nrhs,prhs,&cursor,&nfields,values,names));

missive->array = mxMakeStructure(values, names, nfields);

}

mxWriteRequest(missive, pipeline);

if (nlhs > 1) plhs[1] = mxRequestToStructure(missive);

close(pipeline);

} else {

mexPrintf("Reality check failed: cannot open %s.\n", path);

}

}

}

Line

/* MEX-file to implement the Line function */

#include "mpx.h"

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

char * path = "/tmp/legion.pipe"; /* Its’ name */

mxArray * answer[1]; /* Jobbing answer */

int result; /* Jobbing status variable */

105

mxArray *h, *p, *gp; /* Handles of grandparent, parent and child */

mxRequest * prelude; /* Creation request for parent figure */

mxRequest * missive; /* Creation request for child axes */

int cursor; /* Current argument being parsed */

int nfields; /* Number of properties set to date */

mxArray * values[256]; /* Property values */

const char * names[256]; /* Property names */

/* Call constructor */

mexSetTrapFlag(TRUE); /* Errors trap here */

result = mexCallMATLAB(1, answer, nrhs, (mxArray **)prhs, "line");

if (result) {

printf("Cannot create this line.\n");

} else {

h = answer[0]; /* Acquire line handle */

if (nlhs) plhs[0] = answer[0]; /* Pass back handle to caller */

p = mxDuplicateArray(mexGet(mxGetScalar(h),"Parent")); /* Acquire axes */

gp = mxDuplicateArray(mexGet(mxGetScalar(p),"Parent")); /* And figure */

pipeline = open(path, O_WRONLY); /* Open pipe for transmission */

if (pipeline > 0) {

/* Create grandparent figure, if necessary */

prelude = mxCreateRequest(CREATE_REQUEST, 0, 0);

prelude->parent = 0.0; prelude->words = "figure";

prelude->object = gp; mxWriteRequest(prelude, pipeline);

/* Create parent axes, if necessary */

prelude->parent = mxGetScalar(gp); prelude->words = "axes";

prelude->object = p; mxWriteRequest(prelude, pipeline);

/* Create figure */

missive = mxCreateRequest(CREATE_REQUEST, 0, 0);

missive->parent = mxGetScalar(p); missive->words = "line";

missive->object = h;

/* Get additional properties if any */

cursor = nfields = 0; /* Start from first argument */

if (mexParseXYZ(nrhs, prhs, &cursor, &nfields, values, names)) {

/* Add three coordinate arrays */

} else if (mexParseXY(nrhs, prhs, &cursor, &nfields, values, names)) {

/* Add two coordinate arrays */

}

while (mexParseOne(nrhs,prhs,&cursor,&nfields,values,names)) ;

if (nfields) missive->array = mxMakeStructure(values, names, nfields);

/* Send request */

mxWriteRequest(missive, pipeline);

close(pipeline);

} else {

mexPrintf("Reality check failed: cannot open %s.\n", path);

}

}

}

106

User interface control

/* MEX-file to implement the Uicontrol function */

#include "mpx.h"

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

char * path = "/tmp/legion.pipe"; /* Its’ name */

mxArray * answer[1]; /* Jobbing answer */

int result; /* Jobbing status variable */

mxArray *h, *p; /* Handles of child and parent */

mxRequest * prelude; /* Creation request for parent figure */

mxRequest * missive; /* Creation request for child uicontrol */

int cursor; /* Current argument being parsed */

int nfields; /* Number of properties set to date */

mxArray * values[256]; /* Property values */

const char * names[256]; /* Property names */

mxArray * callback; /* Jobbing callback value */

/* Call constructor */

mexSetTrapFlag(TRUE); /* Errors trap here */

result = mexCallMATLAB(1, answer, nrhs, (mxArray **)prhs, "uicontrol");

if (result) {

printf("Cannot create this uicontrol.\n");

} else {

h = answer[0]; /* Acquire uicontrol handle */

if (nlhs) plhs[0] = answer[0]; /* Pass back handle to caller */

p = mxDuplicateArray(mexGet(mxGetScalar(h),"Parent")); /* Get figure */

/* Set callbacks correctly - fix so others are right, also*/

if (mexGet(mxGetScalar(h),"Callback")) {

callback = mxCreateString("Callback(1,0)");

mexSet(mxGetScalar(h),"Callback",callback);

mxDestroyArray(callback);

}

pipeline = open(path, O_WRONLY); /* Open pipe for transmission */

if (pipeline > 0) {

/* Create parent figure, if necessary */

prelude = mxCreateRequest(CREATE_REQUEST, 0, 0);

prelude->parent = 0.0; prelude->words = "figure";

prelude->object = p; mxWriteRequest(prelude, pipeline);

/* Create uicontrol */

missive = mxCreateRequest(CREATE_REQUEST, 0, 0);

missive->parent = mxGetScalar(p); missive->words = "uicontrol";

missive->object = h;

if (nrhs > 2) { /* Get additional properties if any */

cursor = nrhs % 2; /* Skip handle if it was first */

nfields = 0;

while (mexParseOne(nrhs,prhs,&cursor,&nfields,values,names)) ;

missive->array = mxMakeStructure(values, names, nfields);

107

}

mxWriteRequest(missive, pipeline);

close(pipeline);

} else {

mexPrintf("Reality check failed: cannot open %s.\n", path);

}

}

}

Other methods

Callbacks

/* MEX-file to implement the Callback function */

#include "mpx.h"

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

int result; /* Jobbing status variable */

mxRequest * missive; /* Message to engine daemon */

char * path = "/tmp/legion.pipe";

if (nrhs) { /* If any arguments */

if (mxIsNumeric(prhs[0])) { /* And the first one is a callback index */

pipeline = open(path, O_WRONLY);

/* Create a callback mxRequest with the appropriate callback */

missive = mxCreateRequest(CALLBACK_REQUEST, ROOT, ROOT);

missive->status = (int)(mxGetScalar(prhs[0])); /* Which callback */

/* Add the object handle, and its’ current value */

missive->object = mxDuplicateArray(mexGet(0.0, "CallbackObject"));

missive->array = mxDuplicateArray(

mexGet(mxGetScalar(missive->object), "Value"));

mxWriteRequest(missive, pipeline);

close(pipeline);

}

}

}

Destructor

/* MEX-file to implement the Delete function */

#include "mpx.h"

108

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

int result; /* Jobbing status variable */

mxRequest * missive; /* Message to engine daemon */

char * path = "/tmp/legion.pipe";

if (nrhs) { /* If any arguments */

mexSetTrapFlag(TRUE); /* Call delete handler, trap errors to here */

result = mexCallMATLAB(nlhs, plhs, nrhs, (mxArray **)prhs, "delete");

if (result) { /* Failure */

mexPrintf("That didn’t work.\n");

} else { /* Success - write delete request for first argument */

if (mxIsNumeric(prhs[0])) { /* ...if it is a handle */

pipeline = open(path, O_WRONLY);

missive = mxCreateRequest(DESTROY_REQUEST, ROOT, ROOT);

missive->object = (mxArray *)prhs[0];

mxWriteRequest(missive, pipeline);

close(pipeline);

}

}

}

}

Update

/* MEX-file to implement the Set function */

#include "mpx.h"

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

int result; /* Jobbing status variable */

int cursor; /* Current update being sent */

char * path = "/tmp/legion.pipe"; /* Pipe to write to */

const char * names[256]; /* List of properties */

mxArray * values[256]; /* List of values */

int nfields; /* How many in those lists */

mxArray * properties; /* The above as a structure array */

mxRequest * missive; /* A request */

mexSetTrapFlag(TRUE); /* Errors trap to here */

result = mexCallMATLAB(nlhs, plhs, nrhs, (mxArray **)prhs, "set");

if (result) {

mexPrintf("That didn’t work.\n");

} else {

if (nrhs > 1) {

/* Read property/value pairs from the argument list */

cursor = 1; nfields = 0; /* Skip first argument (a handle) */

109

while (mexParseOne(nrhs, prhs, &cursor, &nfields, values, names)) ;

if (nfields > 0) { /* If there are properties to set, send them */

if (pipeline = open(path, O_WRONLY)) {

missive = mxCreateRequest(SET_REQUEST, ROOT, ROOT);

missive->object = mxDuplicateArray(prhs[0]);

properties = mxMakeStructure(values, names, nfields);

missive->array = properties;

mxWriteRequest(missive, pipeline);

close(pipeline);

} else {

mxPrintf("Reality check failed: cannot open pipe %s\n", path);

}

}

if (nlhs > 0) plhs[0] = properties;

}

}

}

Query

/* MEX-file to implement the Get function */

#include "mpx.h"

/* Gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

int pipeline; /* The pipe to the rest of the world */

int result; /* Jobbing status variable */

double handle; /* Object being queried */

char * path = "/tmp/legion.pipe";

/* Hand this off to the proper function */

mexCallMATLAB(nlhs, plhs, nrhs, (mxArray **)prhs, "get");

/* No point to these yet, maybe never */

/* pipeline = open(path, O_WRONLY); */

/* missive = mxCreateRequest(GET_REQUEST, ROOT, ROOT); */

/* missive->handle = prhs[0]; missive->words = prhs[1]; */

/* mxWriteRequest(missive, pipeline) */

/* close(pipeline); */

}

110

Appendix B

Concurrent Matlab under

RMI

B.1 Facet hierarchy

The Java interfaces in this section represent the basic roles a facet must play.

The Java classes in this section are default implementations using the Remote

Method Invocation infrastructure provided by Java. For more information,

please see section 3.3, especially figure 3.4.

Interface Peer

package mirror;

import java.io.*;

import java.rmi.*;

// A mirror is a collection of peers, which use this interface to

// communicate. A peer adds or removes other peers from its’ broadcast list

// as appropriate. A peer has a shared state, consisting of a set of metadata

// and a primary value. These are traded around as Facts. Peers present new

// Facts to each other using amend(). Peers evaluate and return their values

// on request - this may have side effects at the peer’s tree, which is how

// callbacks come about. Peers will clone an inactive copy of their subtree

// on request. This may then be grafted into another tree.

public interface Peer extends Remote {

111

boolean amend(Fact f) throws IOException;

Object evaluate(Object key, int mode) throws IOException;

Fact add(Name candidate, Name referee) throws IOException;

boolean remove(Name candidate) throws IOException;

boolean graft(MarshalledRune cutting) throws IOException;

MarshalledRune toCutting() throws IOException;

}

Interface Ancestor

package mirror;

import java.io.*;

// An ancestor is a peer of the root mirror of a forest of facet trees. In

// addition to its’ role with respect to other peers, it maintains the local

// listings of a distributed mirror registry, which it acquires from members

// of its’ local tree. It also maintains a name supply. Names generated from

// this source are unique across the forest for the lifetime of the tree.

public interface Ancestor extends Peer {

boolean bind(Name binding) throws IOException;

boolean loose(Name binding) throws IOException;

Name complete(Name binding) throws IOException;

Object freshIdentifier(Object context) throws IOException;

}

Interface Child

package mirror;

import java.io.*;

// A child is that which may be adopted as a descendent of a node in a facet

// tree. Children know their parent, the root of their tree, the location of

// their tree, and possess a reference to an external implementation. These

// things are set at adoption time, and changed at subsequent adoption times,

// until disposal.

public interface Child {

// The possible states.

final int INACTIVE = 0;

final int ACTIVE = 1;

final int DEAD = 2;

boolean adopt(Parent p, Ancestor a, int location, Object backing[]);

int status();

void dispose();

}

112

// There exists a corresponding Parent interface.

Interface Parent

package mirror;

// A parent is a node in a facet tree, which may adopt and disown children.

// Facet trees grow by grafting facets of a mirror onto a parent. If the

// mirror does not exist, it is created. If the mirror exists elsewhere, it

// is imported. If the mirror exists in this tree, then it is moved to this

// point. If there is a subtree rooted at the facet, it follows. This explains

// why it is important not to graft a mirror onto one of its’ descendants.

public interface Parent {

boolean disown(Child c);

boolean adopt(Child c);

Child graft(String mirror, Object details[]);

int status();

void dispose();

}

Class mirror.Rune

package mirror;

import java.io.*;

import java.util.*;

import java.rmi.*;

import java.rmi.server.*;

// A Rune is a facet of a mirror which owns a shared value and metadata about

// that value. This class provides a default implementation of runes. Each

// facet of a mirror has a local backing instance. This backing instance is

// very implementation-dependent and must be defined by overriding methods

// in a subclass.

public class Rune extends UnicastRemoteObject implements Peer, Child, Parent {

Vector children; // the set of children

transient Parent parent; // the parent of this facet

transient Ancestor ancestor; // the root of this tree

transient Hashtable peers; // the set of known peers, hashed by node

transient int location; // the number of this tree

String identity; // the identity of this mirror

Hashtable properties; // local copy of the metadata

Object primary; // local copy of the primary value

Object primaryKey; // designator for primary value in metadata

transient int state; // state of this facet

boolean isStructural; // true if this facet is structural

113

transient Vector queue; // queue of facts awaiting processing

// A daemon thread for doing odd jobs. Runs queued Runnables.

static Executor executor;

// A wildcard or unallocated location

public final static int NO_LOCATION = -1;

// Some sundry evaluation modes

final static int EVALUATE = 0;

final static int EXECUTE = 1;

// Do nothing callback

static Object NO_OP = "";

// Construct an inactive facet of this mirror from scratch.

// In inactive state, a rune has no tree, mirror or backing instance.

public Rune(String mirror) throws IOException {

this.identity = mirror; this.location = NO_LOCATION;

this.children = new Vector(); this.peers = new Hashtable();

this.properties = new Hashtable();

this.primary = null; this.primaryKey = "value";

this.parent = null; this.ancestor = null;

this.state = INACTIVE; this.isStructural = true;

this.queue = new Vector();

}

// Deserialize an inactive facet of this mirror.

private void readObject(ObjectInputStream stream)

throws IOException, ClassNotFoundException {

stream.defaultReadObject();

this.parent = null; this.ancestor = null;

this.peers = new Hashtable(); this.location = NO_LOCATION;

this.state = INACTIVE; this.isStructural = true;

this.queue = new Vector();

}

// ***** A simple interface towards the outside world ***** //

// Set an item of this facet’s data.

// Returns null on failure. Returns the previous value on success.

// Was synchronized, will be again one day.

public Object set(Object key, Object value) throws IOException {

// Reality checks

if (key == null) return null;

if (state == DEAD) {

log.println(identity + " cannot accept metadata operations.");

return null;

}

// Amend the metadata

Object old;

Fact fact = (Fact)(properties.get(key)); // The fact in question

114

if (fact == null) { // ... doesn’t yet exist

fact = isExecutableKey(key) ? new Executable(key, value, location)

: new Fact(key, value, location);

properties.put(fact,fact);

old = null;

} else { // ... has been changed

old = fact.set(value); fact.setFrom(location);

}

// Amend the primary and peers

if (key.equals(primaryKey)) primary = fact.get();

amendAll(fact);

return old;

}

// Set, en masse, no frills. Do executables & special cases using regular

// set, please.

// Was synchronized, will be again one day.

public void setMany(Object keys[], Object values[]) throws IOException {

// Kludge. FIXME later. Belongs in glyph.

for (int j = 0; j< values.length; j++)

if (values[j] == null) values[j] = new double[0];

// end kludge

ArrayEnumeration those = new ArrayEnumeration(keys, values);

Fact big = new Fact(keys[0], those, values[0], location);

for (int i = 0; i < big.extent(); i++) {

Fact f = big.getPayload(i); properties.put(f,f);

}

amendAll(big);

}

// Get an item of this facet’s data.

// Returns the value, and notifies peers if this is for a callback.

// Was synchronized, will be again one day.

public Object get(Object key, boolean forCallback) throws IOException {

// Reality checks

if (key == null) return (forCallback ? NO_OP : null);

if (key.equals(primaryKey)) return primary;

// Retrieve the fact

Fact f = (Fact)(properties.get(key));

if (f == null) {

return (forCallback ? NO_OP : null);

} else if (forCallback) { // Execute...

Executable fx = (Executable)f;

// log.println("Executing " + fx);

if (fx.isGlobal()) { // ...everywhere if global.

evaluateAll(key, EXECUTE); return f.get();

} else if (fx.isFrom(location)) { // ...here if local.

return f.get();

} else {

Name n = (Name)(peers.get(new Integer(f.from())));

if (n == null) { // ...nowhere?

115

// log.println("Collaborative callback " + key +

// " for nonexistent facet " + fx.from());

} else { // ...at origin of callback.

Peer p = (Peer)n.get();

p.evaluate(key, EXECUTE);

}

return NO_OP;

}

} else {

// log.println("Evaluating " + f);

return f.get();

}

}

// ***** Implementations of facet behaviour ***** //

// Register a new peer, from the Peer interface.

// Three phase algorithm. On first contact, a candidate names itself as

// referee. The member contacted broadcasts to others with itself as

// referee, and the others contact the new member with no referee.

// Dead facets do not take part.

// Was synchronized, lead to threading problems. FIXME.

public Fact add(Name candidate, Name referee)

throws IOException {

if (state == DEAD) return null;

Integer there = new Integer(candidate.from());

Name myself = toName();

// If this candidate got a location from this node, remove the marker

Name n = (Name)(peers.get(there));

if (n != null && !n.isComplete()) peers.remove(there);

// log.println(myself + " embracing " + candidate + " via " + referee);

if (referee == null) { // Normal update.

peers.put(new Integer(candidate.from()),candidate);

return null;

} else if (referee == candidate) { // New member, first contact.

Fact p = precis();

addBroadcast(peers.elements(), candidate, myself);

peers.put(new Integer(candidate.from()),candidate);

((Peer)(candidate.get())).add(myself,null);

return p;

} else { // New member referred by existing member.

((Peer)(candidate.get())).add(myself,null);

peers.put(new Integer(candidate.from()),candidate);

return null;

}

}

// Call add on each peer on the given list.

protected void addBroadcast(Enumeration e, Name candidate, Name referee)

throws IOException {

while(e.hasMoreElements()) {

116

Peer p = (Peer)(((Name)(e.nextElement())).get());

p.add(candidate, referee);

}

}

// Unregister a peer, from the Peer interface.

// Returns true iff the named candidate was a peer.

public synchronized boolean remove(Name candidate) throws IOException {

Integer there = new Integer(candidate.from());

return (peers.remove(there) != null);

}

// Attempt to adopt the given parent, ancestor, and tree, and acquire a

// backing instance using the parameters given. From the Child interface.

// Called recursively on any children, with possibly different parameters.

// Returns true if the adoption is successful.

public boolean adopt(Parent p, Ancestor a, int location, Object backing[]) {

this.location = location;

Name me = toName();

if (state == ACTIVE) { // Move existing subtree

try {

if ((p != null) && (p != parent)) {

if (parent != null) parent.disown(this);

parent = p; parent.adopt(this);

}

if ((a != null) && (a != ancestor)) {

if (ancestor != null) ancestor.loose(me);

ancestor = a; ancestor.bind(me);

}

mapFromTree(p, backing);

return adoptAll(p, a, location, backing);

} catch (Exception ex) {

log.println(identity + " could not be moved.");

ex.printStackTrace(log); return false;

}

} else if (state == INACTIVE) { // Graft new subtree

try {

Name comrade = a.complete(new Name(identity));

if (comrade.isFrom(location)) { // Already exists

Child twin = (Child)(comrade.get());

this.dispose();

return twin.adopt(p,a,location, backing);

} else if (comrade.isComplete()) { // Mirror already exists

Peer friend = (Peer)(comrade.get());

Fact summary = friend.add(me,me);

digest(summary);

mapFromGraft(p, backing);

} else { // New mirror needed

primary = null;

mapFromBud(p, backing);

}

this.ancestor = a; a.bind(me);

this.parent = p; p.adopt(this);

this.state = ACTIVE;

117

return adoptAll(p, a, location, backing);

} catch (Exception ex) {

log.println(identity + " could not be adopted.");

ex.printStackTrace(log); return false;

}

} else { // State is dead or out-of-band. Panic.

log.println("Attempted adoption on dead node."); return false;

}

}

// Notify all children of the adoption of their parent

protected boolean adoptAll(Parent p, Ancestor a, int l, Object b[]) {

boolean result = true;

for (Enumeration e = children.elements(); e.hasMoreElements();) {

Child c = (Child)(e.nextElement());

result &= c.adopt(this,ancestor,location, b);

}

return result;

}

// Remove a child from the list of children, from the Parent interface.

public synchronized boolean disown(Child c) {

return children.removeElement(c);

}

// Add a child to the list of children, from the Parent interface.

// Returns true if the child has not previously been adopted here.

public synchronized boolean adopt(Child c) {

if (children.indexOf(c) > -1) {

return false;

} else {

children.addElement(c); return true;

}

}

// Duplicate a graft performed on another node, from the Peer interface.

// Requires more thought to supply a meaningful details argument.

public synchronized boolean graft(MarshalledRune child) throws IOException {

try {

Rune x = child.unmarshal();

return x.adopt(this, ancestor, location, null);

} catch (Exception ex) {

log.println("Could not duplicate graft on " + identity);

ex.printStackTrace(log);

return false;

}

}

// Add a child of a given name to the tree, from the Parent interface.

// Returns the child grafted, or null on failure.

public synchronized Child graft(String mirror, Object details[]) {

if (state == INACTIVE) {

log.println("Attempt to graft something to an inactive parent.");

return null;

118

} else if (state == ACTIVE) {

// Avoid loops. How do we avoid more complex loops?

if (mirror.equals(identity)) return this;

try {

Name x = seek(new Name(mirror));

if (x.isFrom(location)) { // Already here

Child c = (Child)(x.get());

c.adopt(this, ancestor, location, details);

return c;

} else if (x.isComplete()) { // Exists elsewhere

Peer other = (Peer)(x.get());

Child c = (Child)(other.toCutting().unmarshal());

c.adopt(this, ancestor, location, details);

return c;

} else { // Create new mirror

Child c = newBud(mirror, details);

c.adopt(this, ancestor, location, details);

return c;

}

} catch (Exception ex) {

log.println("Graft of " + mirror + " went awry.");

ex.printStackTrace(log); return null;

}

} else { // State is DEAD or out of band

log.println("Attempt to graft something to a dead parent.");

return null;

}

}

// Return the state of this object, as defined in the Child interface.

public synchronized int status() {

return state;

}

// Read a new Fact and react accordingly, from the Peer interface.

// Return true iff the fact had some effect.

// Needs synchronization.

public boolean amend(Fact f) throws IOException {

// Reality checks - existence, completeness, relevance, causality

if (f == null) return false;

if (!f.isComplete()) return false;

if (state == DEAD) return false;

if (!causal(f)) { queue.addElement(f); return false; }

// Run it past the backing instance and into the properties table.

return (reflected(f) & added(f));

}

// Ask each peer to accept a new fact. Returns true iff all the requests

// had some effect.

// Needs synchronization.

protected boolean amendAll(Fact fact) throws IOException {

boolean result = true;

119

for (Enumeration e = peers.elements(); e.hasMoreElements();) {

Peer p = (Peer)(((Name)(e.nextElement())).get());

result &= p.amend(fact);

}

return result;

}

// Ingest all causally-ready facts in queue.

public synchronized void forward() {

int n = queue.size(), i = 0;

while ((n > 0) && (i != n)) {

Fact f = (Fact)(queue.elementAt(i));

if (causal(f)) {

reflected(f); added(f);

queue.removeElementAt(i); n--;

} else {

i++;

}

}

}

// Impress this fact upon the properties table. Return true if the attempt

// was valid and succeeded,

protected boolean added(Fact f) {

if (f.isMultiple()) {

for (int i = 0; i < f.extent(); i++) {

Fact g = f.getPayload(i); properties.put(g,g);

// log.println("Adding payload " + g);

}

} else {

properties.put(f,f);

}

forward(); // FIXME: possible bug site.

return true;

}

// Evaluate some of your data, from the Peer interface.

// If it turns out to be executable data, execute it and report the

// results, otherwise just evaluate it and return that.

// Was synchronized. Will be again some day.

public Object evaluate(Object key, int m) throws IOException {

if (key == null) {

return null; // We ignore bogus requests.

} else if (key.equals(primaryKey)) {

return primary; // We never execute primary values.

} else {

Fact f = (Fact)(properties.get(key));

if (f == null) { // We happily run no-ops.

return null;

} else if (f instanceof Executable) { // We run it here if we can.

return (m == EXECUTE) ? executed(f.get()) : f.get();

} else { // If not, we just hand the original value over.

120

return f.get();

}

}

}

// Ask the entire mirror to evaluate something. Primary use is to signal

// callback events. What shall we do with the returned results?

protected void evaluateAll(Object key, int mode) throws IOException {

for (Enumeration e = peers.elements(); e.hasMoreElements();) {

Peer p = (Peer)(((Name)(e.nextElement())).get());

p.evaluate(key, mode);

}

}

// ***** Utility methods ***** //

public synchronized Name toName() {

return new Name(identity, this, location);

}

// Create a cutting of this subtree for grafting, from the Peer interface.

public synchronized MarshalledRune toCutting() throws IOException {

return new MarshalledRune(this);

}

public String toString() {

return "[" + identity + "/" + location + "]";

}

// Withdraw from all mirrors and trees, and prepare for finalization.

public synchronized void dispose() {

if (state == DEAD) {

return;

} else try {

Name myself = toName();

for (Enumeration e = peers.elements(); e.hasMoreElements();) {

Peer p = (Peer)(((Name)(e.nextElement())).get());

p.remove(myself);

}

for (Enumeration e = children.elements(); e.hasMoreElements();) {

Child c = (Child)(e.nextElement());

c.dispose();

}

if (parent != null) parent.disown(this);

if (ancestor != null) ancestor.loose(myself);

} catch (Exception ex) {

log.println("Disposal failed for " + toString());

ex.printStackTrace(log);

}

}

public void finalize() {

dispose();

}

121

// ***** Diagnostic aids ***** //

static PrintStream log;

// Print children to log stream.

public void printChildren() { printChildren(""); }

public void printChildren(String indent) {

if (state == DEAD) {

log.println(indent + "The cutting " + toString()); return;

} else if (state == INACTIVE) {

log.println(indent + "The cutting " + toString());

} else if (state == ACTIVE) {

log.println(indent + "The " + toString());

} else {

log.println(indent + "The anomaly " + toString()); return;

}

if (children.size() > 0) {

String indent1 = " " + indent;

for (Enumeration e = children.elements(); e.hasMoreElements();) {

Rune c = (Rune)(e.nextElement());

c.printChildren(indent1);

}

}

}

public void printPeers() {

log.print(identity + " has peers: ");

for (Enumeration e = peers.keys(); e.hasMoreElements();) {

log.print((Integer)(e.nextElement()) + " ");

}

log.println();

}

public void printProperties() {

log.print(identity + " has value " + primary);

if (properties == null || properties.size() == 0) {

log.println(" and no metadata.");

} else {

log.println(" and metadata:");

Enumeration e = properties.elements();

while (e.hasMoreElements()) {

log.println(" " + e.nextElement());

}

}

}

static {

log = System.out; // Change to /dev/null for silence

executor = new Executor();

executor.setDaemon(true); executor.start();

}

// ***** Hooks - override these in any subclass ***** //

122

// Absorb a precis from another facet.

protected void digest(Fact f) {

primary = f.get();

if (reflected(f)) added(f);

}

// Provide a precis to another facet.

protected Fact precis() {

return new Fact(identity, properties.elements(), primary, location);

}

// Impress this fact upon the backing instance. Return true if the attempt

// was valid and succeeded, false otherwise.

protected boolean reflected(Fact f) {

return true;

}

// Execute the specified action on the backing application.

// Return the result, or null if it didn’t work.

protected Object executed(Object action) {

return "";

}

// True iff the fact is causally-ready for update.

protected boolean causal(Fact f) {

return true; // FIXME - compare state vectors at least!

}

// Seek to complete a name. Should be overridden by those subclasses

// capable of completing names. By default it delegates to the root.

protected Name seek(Name n) throws IOException {

return ancestor.complete(n);

}

// Adopt a backing instance, when this facet has just been budded.

protected void mapFromBud(Parent p, Object backing[]) { }

// Adopt a backing instance, when this facet has just been grafted.

protected void mapFromGraft(Parent p, Object backing[]) { }

// Adopt a backing instance, when this facet already has one.

protected void mapFromTree(Parent p, Object backing[]) { }

// True iff the key designates the primary value

protected boolean isValueKey(Object x) {

return x.toString().equals("Value");

}

// True iff the key designates executable metadata (callbacks)

protected boolean isExecutableKey(Object x) {

return false;

}

123

// Create a new bud.

protected Child newBud(String name, Object details[]) throws IOException {

return new Rune(name);

}

// ***** Utility classes ***** //

class ArrayEnumeration implements Enumeration {

Object keys[], values[]; int current;

public ArrayEnumeration(Object keys[], Object values[]) {

this.keys = keys; this.values = values; this.current = 0;

}

public boolean hasMoreElements() {

return (current < keys.length);

}

public Object nextElement() {

if (!hasMoreElements()) return null;

Fact temp = new Fact(keys[current], values[current], location);

current++; return temp;

}

}

static class Executor extends Thread {

Vector requests;

boolean alive;

public Executor() {

super("Executor"); alive = true; requests = new Vector();

}

public synchronized void execute(Runnable r) {

requests.addElement(r); if (requests.size() == 1) notify();

}

public synchronized void dispose() { alive = false; }

public void run() {

while (true) synchronized (this) {

while (requests.size() <= 0) {

try { wait(); } catch (InterruptedException ie) {}

}

while (requests.size() > 0) {

Runnable r = (Runnable)(requests.elementAt(0));

r.run(); requests.removeElementAt(0);

}

if (alive == false) return; // Die if necessary

}

}

}

}

124

Class mirror.Root

package mirror;

import java.io.*;

import java.util.*;

import java.rmi.*;

import java.rmi.server.*;

// A root is the facet at the base of a facet tree. The mirror it belongs to

// underlies the entire forest, providing a known point of communication.

// Roots do not have parents or ancestors, and do their own naming services.

public class Root extends Rune implements Ancestor {

int nameSource;

Hashtable names;

// Construct a one-node facet tree. Seek the rest of the forest on the

// local host, then another host if supplied, using the RMI registry.

public Root(String identity, String host) throws IOException {

super(identity);

String listing[] = Naming.list("///");

String aFacet = "rmi:/facet." + identity;

Ancestor other = null;

// Attempt to find a listing for this forest somewhere

try {

for (int i = 0; i<listing.length; i++) {

if (listing[i].startsWith(aFacet)) {

String suffix = listing[i].substring(5);

log.println("Found " + suffix);

other = (Ancestor)(Naming.lookup("///"+suffix));

break;

}

}

if (other == null && host != null) {

listing = Naming.list("//" + host + "/");

for (int i = 0; i<listing.length; i++) {

if (listing[i].startsWith(aFacet)) {

String suffix = listing[i].substring(5);

log.println("Found " + suffix);

other = (Ancestor)(Naming.lookup("///"+suffix));

break;

}

}

}

} catch (Exception ex) {

log.println("RMI search failed.");

ex.printStackTrace(log);

other = null;

}

if (other == null) {

location = 0; primary = new Integer(0);

125

nameSource = 0; names = new Hashtable(); state = ACTIVE;

} else {

primary = other.freshIdentifier(this);

location = ((Integer)primary).intValue();

Name me = toName(); digest(other.add(me, me));

nameSource = 0; names = new Hashtable(); state = ACTIVE;

}

mapFromRoot();

Naming.rebind("///facet." + identity + "." + location, this);

}

// ***** Implementation of the Ancestor interface ***** //

// Add a binding to the distributed registry

public boolean bind(Name binding) throws IOException {

if (binding.isComplete()) {

// FIXME - check for age?

names.put(binding, binding); return true;

} else {

return false;

}

}

// Remove a binding from the distributed registry

public boolean loose(Name binding) throws IOException {

return (names.remove(binding) != null);

}

public Name complete(Name binding) throws IOException {

return (binding.complete(peers, names));

}

public Object freshIdentifier(Object context) throws IOException {

if (context == null) {

return location + "." + (nameSource++);

} else if (context instanceof Ancestor) {

Integer result = freshLocation();

peers.put(result, new Name(identity));

return result;

} else {

return location + "." + (nameSource++);

}

}

// Fetch a fresh location number in the range 0..maxnodes, by treating

// the name space as a branching-ary tree. This location may allocate any

// vacant children it has, and if all children are instantiated, it

// delegates the request to one of them. On overflow, start at node 0.

// If no node 0...(-:

static final int branching = 3;

static final int maxnodes = 27;

protected Integer freshLocation() throws IOException {

126

synchronized (peers) {

int base = location * branching + 1;

if (base >= maxnodes) { // Wrap around if too big

Object n = peers.get(new Integer(0));

if (n == null) return (new Integer(0));

return (Integer)(((Ancestor)n).freshIdentifier(this));

}

// Seek local answer to query

for (int offset = 0; offset < branching; offset++) {

Integer x = new Integer(base + offset);

if (peers.get(x) == null) return x;

}

// Delegate to a descendant

for (int offset = 0; offset < branching; offset++) {

Object n = peers.get(new Integer(base + offset));

Object x = ((Ancestor)n).freshIdentifier(this);

if (x != null) return (Integer)x;

}

return null;

}

}

// ***** Utility methods ***** //

public synchronized Name toName() {

return new Name(identity, this, location);

}

public String toString() {

return "root of " + identity + " at " + location;

}

// Withdraw from all mirrors and trees, and prepare for finalization.

public synchronized void dispose() {

super.dispose();

try {

Naming.unbind("///facet." + identity + "." + location);

} catch (Exception ex) {

log.println("Cannot unbind myself.");

ex.printStackTrace(log);

}

}

// ***** Hooks - override these in any subclass ***** //

// Absorb a precis from another facet.

protected void digest(Fact f) {

primary = new Integer(location); if (reflected(f)) added(f);

}

// Provide a precis to another facet.

protected Fact precis() {

return new Fact(identity, properties.elements(), primary, NO_LOCATION);

127

}

// Seek to complete a name.

protected Name seek(Name n) throws IOException { return complete(n); }

// Attach this root to the backing application in the first instance.

protected boolean mapFromRoot() {

return true;

}

}

B.2 Fact hierarchy

Class mirror.Fact

package mirror;

import java.util.*;

import java.io.*;

// A Fact is a binding between a key and a value, with an optional payload

// and origin. The payload is a vector of Facts, the origin is an integer

// location. Fact values are mutable; payloads, keys, and locations are not.

public class Fact implements Serializable, Cloneable {

Object key;

Object value;

Vector payload;

int location;

// Create a singular fact.

public Fact(Object key, Object value, int location) {

this.key = key; this.value = value;

this.payload = null; this.location = location;

}

// Create a multiple fact.

public Fact(Object key, Enumeration stuff, Object value, int location) {

this.key = key; this.value = value; this.location = location;

this.payload = new Vector(); // Capacity increment 1?

while (stuff.hasMoreElements())

this.payload.addElement(stuff.nextElement());

}

public int from() { return location; }

public boolean isComplete() { return (value != null); }

public boolean isMultiple() { return (payload != null); }

public boolean isFrom(int here) { return here == location; }

public Object getKey() { return key; }

public Object get() { return value; }

128

public int extent() { return isMultiple() ? payload.size() : 0; }

public Fact getPayload(int ix) {

return isMultiple() ? (Fact)(payload.elementAt(ix)) : null;

}

public Object set(Object value) {

Object old = this.value; this.value = value; return old;

}

public int setFrom(int l) {

int old = location; location = l; return l;

}

// Multiple facts respect pointer equality.

// Singular facts respect key equality.

// Everything else compares with the key.

public boolean equals(Object x) {

if (x instanceof Fact) {

Fact f = (Fact)x;

return f.isMultiple() ? (f == this) : f.getKey().equals(key);

} else {

return x.equals(key);

}

}

// hashCode() is consistent with equals.

public int hashCode() {

return isMultiple() ? super.hashCode() : key.hashCode();

}

// Multiple facts are listed on cardinality.

// Singular facts are listed as a tuple.

public String toString() {

if (isMultiple()) return "an "+extent()+"-ary fact";

return "(" + key + "<=>" + value + "[" + location + "])";

}

/*

// Medium deep copy. Not unless everything is Cloneable.

public Object clone() {

Object newvalue = (value == null) ? null : value.clone();

if (payload == null) {

return new Fact(key.clone(), newvalue, location);

} else {

return new Fact(key.clone(), payload.elements(), newvalue, location);

}

}

*/

// Shallow copy. DANGEROUS.

public Object clone() {

if (payload == null) {

return new Fact(key, value, location);

} else {

129

return new Fact(key, payload.elements(), value, location);

}

}

}

Class mirror.Name

package mirror;

import java.util.*;

import java.io.*;

// A Name is a reference on steroids, binding a name to a rune. Names are

// always singular, but not always complete. Names can complete themselves.

public class Name extends Fact {

int state;

// Possible states

static final int NOMINAL = 0;

static final int SEARCHING = 1;

static final int FOUND = 2;

// Use the supplied information to complete yourself.

public Name complete(Hashtable peers, Hashtable reg) throws IOException {

if (isComplete()) {

state = NOMINAL; // We already gots a referent, than’ you.

} else if (state == NOMINAL) { // Checking out at home

Name n = (Name)(reg.get(this));

if ((n != null) && (n.isComplete())) {

state = NOMINAL; this.value = n.get();

this.location = n.from();

} else {

state = SEARCHING;

for (Enumeration e = peers.elements(); e.hasMoreElements();) {

n = ((Ancestor)((Name)(e.nextElement())).get()).complete(this);

if (n.isComplete()) {

state = NOMINAL; this.value = n.get();

this.location = n.from(); break;

}

}

}

} else if (state == SEARCHING) { // Checking out away from home

Name n = (Name)(reg.get(this));

if (n != null && n.isComplete()) {

state = NOMINAL; this.value = n.get();

this.location = n.from();

}

}

return this;

}

public String toString() {

130

return key + " [" + location + "]";

}

public Name(String which, Object what, int where) {

super(which, what, where); this.state = NOMINAL;

}

public Name(String which) {

super(which, null, Rune.NO_LOCATION);

}

}

Class mirror.Executable

package mirror;

// A fact whose contents are meant to be run. Contains an alternate

// definition in case it’s meant to be run in several places.

public class Executable extends Fact {

Object alternate;

boolean global;

public Executable(Object key, Object value, int location) {

super(key, value, location);

this.alternate = value; this.global = false;

}

public Executable(Object key, Object value, Object alternate, int l) {

super(key, value, l);

this.alternate = alternate; this.global = false;

}

public boolean isGlobal() { return global; }

public Object get() { return global ? alternate : value; }

public void setGlobal(boolean yah) { global = yah; }

public String toString() {

return super.toString() + "(X)";

}

}

B.3 Matlab bindings

Class mirror.Glyph

This is a subclass of mirror.Rune with the appropriate hooks overridden to issue

Matlab commands via and instance of com.mathworks.jmi.Matlab. Threading

131

problems described in section 3.3.3 have forced the splitting of graft into several

methods.

package mirror;

import java.io.*;

import java.util.*;

import java.rmi.*;

import java.rmi.server.*;

import com.mathworks.jmi.*;

// A Glyph is a Rune backed by a Matlab Handle Graphics object.

public class Glyph extends Rune {

transient double handle; // Handle of the backing instance

static Matlab matlab; // Interface to the backing application

String kind; // Constructor for the backing instance

boolean isUIControl; // true iff this is a user interface control

// Wildcard or unallocated handle

static double NO_HANDLE = -3.1415926483;

// Construct an inactive facet of this HG object

public Glyph(String mirror) throws IOException {

super(mirror); this.handle = NO_HANDLE; this.kind = null;

}

// Deserialize an inactive facet of this HG object

private void readObject(ObjectInputStream stream)

throws IOException, ClassNotFoundException {

stream.defaultReadObject();

this.handle = NO_HANDLE;

}

// ***** Layered reimplementation of grafting and adopting ***** //

// This is the root of an inactive subtree. Passes back the information

// for the Matlab bridging code to install callbacks and metadata. First

// entry is tag, second entry is kind, third is keys, fourth is values,

// fifth is this glyph, sixth through whatever are similar entries

// for children.

Object[] subtreeDetails() {

Object[] result = new Object[children.size() + 5];

result[0] = identity; result[1] = kind;

Object keys[] = new Object[properties.size()];

Object values[] = new Object[properties.size()];

Enumeration e = properties.elements();

for (int i = 0; e.hasMoreElements(); i++) {

Fact f = (Fact)(e.nextElement());

keys[i] = f.getKey(); values[i] = f.get();

}

result[2] = keys; result[3] = values;

result[4] = this;

132

e = children.elements();

for (int i = 0; e.hasMoreElements(); i++) {

Glyph g = (Glyph)(e.nextElement());

result[i+5] = g.subtreeDetails();

}

return result;

}

// The Name refers to a facet of a mirror elsewhere. Obtain the cutting,

// extract details for Matlab to create things on. Adoption happens in the

// other stage, after the backing instances exist.

public Object[] graftStart(Name that)

throws ClassNotFoundException, IOException {

Peer p = (Peer)(that.get());

Glyph g = (Glyph)(p.toCutting().unmarshal());

return g.subtreeDetails();

}

public synchronized Child graft(String mirror, Object details[]) {

log.println("Conventional grafting does not work with these.");

return null;

}

// The Glyph is the root of an inactive subtree, the backing instances are

// in position and prepped. Take the handles, do the adoption. First entry

// is a double[1], this handle, second through whatever are similar

// entries for each child.

public void graftFinish(Glyph x, Object handles[]) throws IOException {

x.graftAdopt(this, ancestor, location, handles);

}

public void graftAdopt(Parent p, Ancestor a, int l, Object handles[])

throws IOException {

// Generic paperwork - ERROR CHECKING IS SOMEONE ELSE’S PROBLEM

this.location = l; this.parent = p; p.adopt(this);

Name n = a.complete(new Name(identity));

Name me = toName();

this.ancestor = a; a.bind(me);

Peer other = (Peer)(n.get());

other.add(me, me);

// Bind backing instance to first handle

Double myH = (Double)(handles[0]);

this.handle = myH.doubleValue();

// Adopt each child recursively

// This hack depends critically on successive Enumerations yielding the

// same traversal order. If not, whack tags in as well and do a search.

Enumeration e = children.elements();

for (int i = 1; e.hasMoreElements(); i++) {

Object theirH[] = (Object [])(handles[i]);

Glyph g = (Glyph)(e.nextElement());

g.graftAdopt(this, a, l, theirH);

}

133

state = ACTIVE;

}

// Create a new bud, point it at an existing HG object, get it adopted.

// Note: EXISTING MIRRORS ARE SOMEONE ELSE’S PROBLEM.

public Child budMatlab(String that, double handle, String kind,

Object keys[], Object values[]) throws IOException {

Object details[] = {kind, keys, values, new Double(handle)};

Glyph g = new Glyph(that);

g.adopt(this, ancestor, location, details);

return g;

}

// Seek out a Name referring to a mirror Matlab wants a facet of

public Name seek(String identifier) throws IOException {

return seek(new Name(identifier));

}

protected boolean isUIComponent(String k) {

if (kind.equalsIgnoreCase("Uicontrol")) return true;

if (kind.equalsIgnoreCase("Uimenu")) return true;

if (kind.equalsIgnoreCase("Uicontextmenu")) return true;

return false;

}

// ***** Utility methods ***** //

public String toString() {

return "facet of " + kind + " " + handle + " at " + location;

}

// ***** Hooks - override these in any subclass ***** //

// Provide a precis to another facet.

protected Fact precis() {

return new Fact(identity, properties.elements(), primary, location);

}

// Impress this fact upon the backing instance. Return true if the attempt

// was valid and succeeded, false otherwise.

protected boolean reflected(Fact f) {

// Executable metadata is held exclusively within the rune

if (f instanceof Executable) return true;

// Dump multiple values straight in

if (f.isMultiple()) try {

Object keys[] = new Object[f.extent()];

Object values[] = new Object[f.extent()];

for (int i = 0; i < f.extent(); i++) {

Fact g = (Fact)(f.getPayload(i));

// log.println("Reflecting payload " + g);

// FIXME: don’t when isExecutableKey(keys[i])!

134

keys[i] = g.getKey(); values[i] = g.get();

}

Object args[] = {new Double(handle), keys, values};

// FIXME - change to asynchronous execution?

// double[] d = (double[])(matlab.feval("stdset",args));

// return (d[0] == 1);

matlab.feval("stdset",args,null); return true;

} catch (Exception ex) {

log.println("Reflection failed on " + f);

ex.printStackTrace(log); return false;

}

// Change the key if it is a primary value

if (f.getKey().equals(primaryKey)) {

if (isUIControl) { // UIControl has a primary value

f = new Fact(primaryKey,f.get(), NO_LOCATION);

} else {

return true; // Other HG objects don’t have one?

}

}

// Must be a single key/value pair with correct key - punch it in

try {

Object args[] = {new Double(handle), f.getKey(), f.get()};

// FIXME: change to asynchronous execution?

double[] d = (double[])(matlab.feval("stdset",args));

return (d[0] == 1);

} catch (Exception ex) {

log.println("Reflection failed on " + f);

ex.printStackTrace(log); return false;

}

}

// Execute the specified action on the backing application.

// Return the result, or null if it didn’t work.

// Should we go asynchronous?

protected Object executed(Object action) {

try {

// log.println(location + ": executing " + action);

Object x = matlab.eval(action.toString());

return x;

} catch (Exception ex) {

log.println("Execution failed on " + action);

ex.printStackTrace(log); return null;

}

}

// True iff the fact is causally-ready for update.

protected boolean causal(Fact f) {

return true; // FIXME - compare state vectors at least!

}

// Adopt a backing instance, when this facet has just been budded.

protected void mapFromBud(Parent p, Object backing[]) {

135

// See budMatlab for details.

this.kind = (String)backing[0];

this.isUIControl = isUIComponent(this.kind);

this.handle = ((Double)(backing[3])).doubleValue();

Object keys[] = (Object[])(backing[1]);

Object values[] = (Object[])(backing[2]);

for (int i = 0; i<keys.length; i++) {

if (values[i] == null) values[i] = new double[0];

Fact f = isExecutableKey(keys[i])

? new Executable(keys[i], values[i], location)

: new Fact(keys[i], values[i], location);

properties.put(f,f);

}

}

// Adopt a backing instance, when this facet has just been grafted.

protected void mapFromGraft(Parent p, Object backing[]) {

// Deprecated - see graftStart for details

}

// Adopt a backing instance, when this facet already has one.

protected void mapFromTree(Parent p, Object backing[]) {

// Deprecated - see graftStart for details

}

// True iff the key designates the primary value

protected boolean isValueKey(Object x) {

String key = x.toString();

return key.equals("Value"); // FIXME - needs to be different

}

// True iff the key designates executable metadata (callbacks)

protected boolean isExecutableKey(Object x) {

String s = x.toString();

if (s.equalsIgnoreCase("deletefcn")) return true;

if (s.equalsIgnoreCase("createfcn")) return true;

if (s.equalsIgnoreCase("buttondownfcn")) return true;

if (s.equalsIgnoreCase("callback")) return true;

if (s.equalsIgnoreCase("windowbuttondownfcn")) return true;

if (s.equalsIgnoreCase("windowbuttonupfcn")) return true;

if (s.equalsIgnoreCase("windowbuttonmotionfcn")) return true;

if (s.equalsIgnoreCase("resizefcn")) return true;

if (s.equalsIgnoreCase("closerequestfcn")) return true;

if (s.equalsIgnoreCase("keypressfcn")) return true;

if (s.equalsIgnoreCase("resizefcn")) return true;

return false;

}

static {

matlab = new Matlab();

}

}

136

Class mirror.RootWindow

This is a subclass of mirror.Root which uses as backing instance the Matlab

root window. The same issues as for mirror.Glyph have been addressed, mostly

identically.

package mirror;

import java.io.*;

import java.util.*;

import java.rmi.*;

import java.rmi.server.*;

import com.mathworks.jmi.*;

// A Root facet backed by a Matlab session. Meant to be started from within

// the Matlab session using their Java API.

public class RootWindow extends Root {

protected static Matlab matlab; // The access point to the Matlab VM

protected static Executor executor; // An objective point of view

// Attach this object to the Java root window, putting the keys and values

// in metadata.

public RootWindow(String identity, String host,

Object keys[], Object values[]) throws IOException {

super(identity, host);

// if (host != "ack") return;

if (keys != null) {

for (int i = 0; i < keys.length; i++) {

if (values[i] == null) values[i] = new double[0];

Fact f = new Fact(keys[i],values[i],location);

properties.put(f,f);

}

}

}

// ***** Layered reimplementation of grafting and adopting ***** //

// The Name refers to a facet of a mirror elsewhere. Obtain the cutting,

// extract details for Matlab to create things on. Adoption happens in the

// other stage, after the backing instances exist.

public Object[] graftStart(Name that)

throws ClassNotFoundException, IOException {

Peer p = (Peer)(that.get());

Glyph g = (Glyph)(p.toCutting().unmarshal());

return g.subtreeDetails();

}

public void graftFinish(Glyph x, Object handles[]) throws IOException {

x.graftAdopt(this, this, location, handles);

}

137

public synchronized Child graft(String mirror, Object details[]) {

log.println("Conventional grafting does not work with these.");

return null;

}

// Create a new bud, point it at an existing HG object, get it adopted.

// Note: EXISTING MIRRORS ARE SOMEONE ELSE’S PROBLEM.

public Child budMatlab(String that, double handle, String kind,

Object keys[], Object values[]) throws IOException {

Object details[] = {kind, keys, values, new Double(handle)};

Glyph g = new Glyph(that);

g.adopt(this, this, location, details);

return g;

}

// Seek out a Name referring to a mirror Matlab wants a facet of

public Name seek(String identifier) throws IOException {

return seek(new Name(identifier));

}

// STOP HERE

// ***** Utility methods ***** //

public String toString() {

return "root window of session " + identity + " [" + location + "]";

}

// ***** Hooks - override these in any subclass ***** //

// Impress this fact upon the backing instance. Return true if the attempt

// was valid and succeeded, false otherwise.

protected boolean reflected(Fact f) {

// Reject multiple value straight off

if (f == null) {

log.println("Reflecting a null fact."); return false;

}

// Dump multiple values straight in

if (f.isMultiple()) try {

Object keys[] = new Object[f.extent()];

Object values[] = new Object[f.extent()];

for (int i = 0; i < f.extent(); i++) {

Fact g = (Fact)(f.getPayload(i));

keys[i] = g.getKey(); values[i] = g.get();

}

Object args[] = {new Double(0), keys, values};

// FIXME - change to asynchronous execution?

double[] d = (double[])(matlab.feval("stdset",args));

return (d[0] == 1);

} catch (Exception ex) {

log.println("Reflection failed on " + f);

ex.printStackTrace(log); return false;

138

}

// Change the key if it is a primary value

if (f.getKey().equals(primaryKey)) {

return true; // We do not amend the value of a root

}

// Must be a single key/value pair with correct key - punch it in

try {

log.println("Reflecting " + f.getKey());

Object args[] = {new Double(0), f.getKey(), f.get()};

// FIXME: change to asynchronous execution?

double[] d = (double[])(matlab.feval("stdset",args));

return (d[0] == 1);

} catch (Exception ex) {

log.println("Reflection failed on " + f);

ex.printStackTrace(log); return false;

}

}

// Execute the specified action on the backing application.

// Return the result if it worked, null if it didn’t.

protected Object executed(Object action) {

try {

return matlab.eval(action.toString());

} catch (Exception ex) {

log.println("Execution failed on " + action);

ex.printStackTrace(log); return null;

}

}

// Digest a precis of the mirror

protected void digest(Fact f) {

primary = new Integer(location);

Object keys[] = new Object[f.extent()];

Object values[] = new Object[f.extent()];

for (int i = 0; i<f.extent(); i++) {

Fact g = f.getPayload(i);

keys[i] = g.getKey(); values[i] = g.get();

properties.put(g,g);

}

Object args[] = {new Double(0), keys, values};

matlab.feval("stdset",args,null);

}

// True iff the key designates the primary value

protected boolean isValueKey(Object x) {

return false;

// x.toString().equalsIgnoreCase(""); // FIXME - eh?

}

// True iff the key designates executable metadata (callbacks)

protected boolean isExecutableKey(Object x) {

return false; // Nothing a Matlab root window can do is executable

139

}

// Create a new bud for this tree

protected Child newBud(String mirror) throws IOException {

return new Glyph(mirror);

}

// Attach this root to the backing application in the first instance.

protected boolean mapFromRoot() {

// What goes here?

return true;

}

static {

matlab = new Matlab();

}

}

Matlab definitions for class double

These are the Matlab functions which replace the basic Handle Graphics com-

mands in Concurrent Matlab over RMI. They override these by virtue of be-

ing placed in a directory designated to hold definitions for class double, or-

dinary numbers. Some few of these commands also have forms where none

of the arguments are a number. These are duplicated in the directory for

class char, ordinary strings. The files each start with a comment of the form

%CLASS/METHOD This method does....

%DOUBLE/SET Set object properties.

% This version knows about glyphs.

function x = set(hndl,varargin)

if (nargout > 0),

x = builtin(’set’,hndl,varargin{:});

else,

builtin(’set’,hndl,varargin{:});

end;

[k,v,n] = setargs(varargin{:}); if (n == 0), return; end;

% Check each handle for glyphs; notify them if found

for (h = hndl(:)’),

r = getappdata(h,’Rune’);

140

if (~isempty(r)),

nlumped = 0;

for (i = 1:n),

k{i} = lower(k{i}); followthrough = 1;

%disp([’Setting ’ k{i}]);

switch (k{i}),

case {’xdata’,’ydata’,’zdata’,’cdata’,...

’faces’,’vertices’,’vertexnormals’,’facevertexcdata’},

nlumped = nlumped + 1;

lKeys{nlumped} = k{i}; lValues{nlumped} = v{i};

followthrough = 0;

case ’parent’, % FIXME HARD

parent = getappdata(v{i}, ’Rune’);

location = getappdata(0, ’RuneLocation’);

ancestor = getappdata(0, ’Rune’);

r.adopt(parent, ancestor, location);

followthrough = 0;

case ’tag’,

% Changing the mirror identifier? No.

error(’Don’’t do that.’);

case {’currentfigure’,’showhiddenhandles’},

followthrough = 0; % Bug fix

case ’deletefcn’,

stdset(h,’DeleteFcn’,’RuneDelete’);

case ’buttondownfcn’,

stdset(h,’ButtonDownFcn’,’RuneButtonDown’);

case ’callback’,

stdset(h,’Callback’,’RuneCallback’);

case ’resizefcn’,

stdset(h,’ResizeFcn’,’RuneResize’);

case ’keypressfcn’,

stdset(h,’KeyPressFcn’,’RunePress’);

case ’closerequestfcn’,

stdset(h,’CloseRequestFcn’,’RuneCloseReq’);

case ’windowbuttondownfcn’,

stdset(h,’WindowButtonDownFcn’,’RuneWindowDown’);

case ’windowbuttonupfcn’,

stdset(h,’WindowButtonUpFcn’,’RuneWindowUp’);

case ’windowbuttonmotionfcn’,

stdset(h,’WindowButtonMotionFcn’,’RuneWindowMotion’);

end;

if (followthrough), r.set(k{i}, v{i}); end;

end;

if (nlumped > 0),

r.setMany(lKeys, unempty(lValues));

end;

end;

end;

%DOUBLE/GET Get handle graphics properties.

141

function out = get(hndls, varargin);

out = builtin(’get’,hndls, varargin{:});

%DOUBLE/DELETE Delete shared graphics object.

% If the argument is a handle, and the object is shared, it will be

% unshared before being deleted. Otherwise, as DELETE.

function delete(h)

builtin(’delete’,h);

%DOUBLE/AXES Create axes in arbitrary positions.

% If the parent figure is shared, and the axes are tagged, the axes will

% also be shared. Otherwise, as AXES.

function h = axes(varargin)

% Determine whether the axes already exist

if (nargin == 0),

isnew = 1;

elseif (~ishandle(varargin{1}))

isnew = 1;

else,

isnew = 0;

end;

% Run the original command

if (nargin == 1),

builtin(’axes’,varargin{:}); % Shift focus

hndl = varargin{1};

else

hndl = builtin(’axes’,varargin{:}); % Create/amend axes

h = hndl;

end;

phndl = builtin(’get’,hndl,’Parent’);

% If the parent is a glyph, and the new child is named, make it a glyph

if (isnew),

if (isrune(phndl)),

tag = get(hndl,’Tag’);

if (~isempty(tag)),

parent = getappdata(phndl,’Rune’);

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new axes

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’axes’, keys, values);

142

setappdata(hndl,’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Existing axes

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’type’,’axes’);

return;

else, % Grafted axes

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details);

glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

end;

end;

if (nargout > 0), h = hndl; end;

%DOUBLE/FIGURE Create figure window.

% If the root is shared, and the figure is tagged, it will be shared.

% Otherwise, as FIGURE.

function h = figure(varargin)

% Determine whether the figure already exists

if (nargin == 0),

isnew = 1;

elseif (~ishandle(varargin{1}))

isnew = 1;

else,

isnew = 0;

end;

% Run the original command

hndl = builtin(’figure’,varargin{:});

% If the parent is a glyph, and the new child is named, make it a glyph

if (isnew),

if (isrune(0)),

tag = get(hndl,’Tag’);

if (~isempty(tag)),

parent = getappdata(0,’Rune’);

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % First facet of mirror

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(get(hndl,keys)’);

glyph = parent.budMatlab(tag,hndl, ’figure’, keys, values);

setappdata(hndl,’Rune’,glyph);

runify(hndl);

elseif (name.isFrom(location)),

builtin(’delete’,hndl); % FIXME HARD

143

hndl = findobj(0,’tag’,tag,’type’,’figure’);

return;

else, % Grafting from elsewhere

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details);

glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

end;

end;

if (nargout > 0),

h = hndl;

end;

%DOUBLE/IMAGE Display image.

% If the parent axes are shared, so will the image be. If the image is

% untagged, one will be provided. Otherwise, as IMAGE.

function h = image(varargin)

% Run the original command

hndl = builtin(’image’,varargin{:});

phndl = builtin(’get’,hndl,’Parent’);

root = getappdata(0,’Rune’);

% If the parent axes are a glyph, make the child a glyph

if (isappdata(phndl,’Rune’)),

tag = get(hndl,’tag’); parent = getappdata(phndl,’Rune’);

parent = getappdata(phndl,’Rune’);

if (isempty(tag)), % generate a name if not given one

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndl,’tag’,tag);

end;

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new image

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’image’, keys, values);

setappdata(hndl, ’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Existing image - FIXME

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’type’,’image’);

return;

else, % Grafted image

details = parent.graftStart(name);

details = unmarshal(details);

144

handles = runify(hndl, 0, details); glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

% Return something if required

if (nargout > 0),

h = hndl;

end;

%DOUBLE/LIGHT Create light.

% If the parent axes are shared, then so will this be. If a tag is not

% supplied, one will be generated. Otherwise, as LIGHT.

function h = light(varargin)

% Run the original command

hndl = builtin(’light’,varargin{:});

phndl = builtin(’get’,hndl,’Parent’);

root = getappdata(0,’Rune’);

% If the parent axes are a glyph, make the child a glyph

if (isappdata(phndl,’Rune’)),

tag = get(hndl,’tag’); parent = getappdata(phndl,’Rune’);

parent = getappdata(phndl,’Rune’);

if (isempty(tag)), % generate a name if not given one

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndl,’tag’,tag);

end;

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new light

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’light’, keys, values);

setappdata(hndl, ’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Existing light - FIXME

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’type’,’light’);

return;

else, % Grafted light

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details); glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

% Return something if required

if (nargout > 0),

145

h = hndl;

end;

%DOUBLE/LINE Create line.

% If the parent axes is shared, the line will also be shared. If the line

% has no tag, one will be provided. Otherwise, as LINE.

function h = line(varargin)

% Run the original command and parse the output

hndls = builtin(’line’,varargin{:});

phndls = builtin(’get’,hndls,’Parent’);

nlines = length(hndls);

if (nlines > 1), phndls = cat(1,phndls{:}); end;

root = getappdata(0,’Rune’);

% For each line, if the parent is a glyph, make the child a glyph

for (i = 1:nlines),

if (isappdata(phndls(i),’Rune’)),

tag = get(hndls(i),’Tag’);

parent = getappdata(phndls(i),’Rune’);

if (isempty(tag)), % generate a name if not given one

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndls(i),’tag’,tag);

end;

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new line

keys = lower(fieldnames(builtin(’set’,hndls(i))));

values = unempty(builtin(’get’,hndls(i),keys)’);

glyph = parent.budMatlab(tag, hndls(i), ’line’, keys, values);

setappdata(hndls(i),’Rune’,glyph); runify(hndls(i));

elseif (name.isFrom(location)), % Existing line - FIXME

builtin(’delete’,hndls(i));

hndls(i) = findobj(0,’tag’,tag,’type’,’line’);

return;

else, % Grafted line

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndls(i), 0, details);

glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

end;

% Return something if required

if (nargout > 0),

h = hndls;

end;

146

%DOUBLE/PATCH Create patch.

% If the parent axes are shared, so will the patch be. If the patch is

% untagged, one will be provided. Otherwise, as PATCH.

function h = patch(varargin)

% Run the original command

hndl = builtin(’patch’,varargin{:});

phndl = builtin(’get’,hndl,’Parent’);

root = getappdata(0,’Rune’);

% If the parent axes are a glyph, make the child a glyph

if (isappdata(phndl,’Rune’)),

tag = get(hndl,’tag’); parent = getappdata(phndl,’Rune’);

parent = getappdata(phndl,’Rune’);

if (isempty(tag)), % generate a name if not given one

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndl,’tag’,tag);

end;

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new patch

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’patch’, keys, values);

setappdata(hndl, ’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Existing patch - FIXME

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’type’,’patch’);

return;

else, % Grafted patch

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details); glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

% Return something if required

if (nargout > 0),

h = hndl;

end;

147

%DOUBLE/RECTANGLE Create rectangle, rounded-rectangle, or ellipse.

% If the parent axes are shared, then the rectangle will be also. If the

% rectangle is not tagged, one will be provided. Otherwise, as RECTANGLE.

function h = rectangle(varargin)

% Run the original command

hndl = builtin(’rectangle’,varargin{:});

phndl = builtin(’get’,hndl,’Parent’);

root = getappdata(0,’Rune’);

% If the parent axes are a glyph, make the child a glyph

if (isappdata(phndl,’Rune’)),

tag = get(hndl,’tag’); parent = getappdata(phndl,’Rune’);

parent = getappdata(phndl,’Rune’);

if (isempty(tag)), % generate a name if not given one

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndl,’tag’,tag);

end;

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new rectangle

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’rectangle’, keys, values);

setappdata(hndl, ’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Existing rectangle - FIXME

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’type’,’rectangle’);

return;

else, % Grafted rectangle

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details); glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

% Return something if required

if (nargout > 0),

h = hndl;

end;

%DOUBLE/SURFACE Create a surface.

% If the parent axes are shared, then so will the surface. If there is no

% tag, one will be generated. Otherwise, as SURFACE.

function h = surface(varargin)

% Run the original command

148

hndl = builtin(’surface’,varargin{:});

phndl = builtin(’get’,hndl,’Parent’);

root = getappdata(0,’Rune’);

% If the parent axes are a glyph, make the child a glyph

if (isappdata(phndl,’Rune’)),

tag = get(hndl,’tag’); parent = getappdata(phndl,’Rune’);

parent = getappdata(phndl,’Rune’);

if (isempty(tag)), % generate a name if not given one

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndl,’tag’,tag);

end;

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new surface

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’surface’, keys, values);

setappdata(hndl, ’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Existing surface - FIXME

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’type’,’surface’);

return;

else, % Grafted surface

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details); glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

% Return something if required

if (nargout > 0),

h = hndl;

end;

%DOUBLE/TEXT Text annotation.

% If the parent axes is shared, the text will also be shared. If the text

% has no tag, one will be provided. Otherwise, as LINE.

function h = text(varargin)

% Run the original command and parse the output

hndls = builtin(’text’,varargin{:});

phndls = builtin(’get’,hndls,’Parent’);

nlines = length(hndls);

if (nlines > 1), phndls = cat(1,phndls{:}); end;

root = getappdata(0,’Rune’);

% For each text label, if the parent is a glyph, make the child a glyph

149

for (i = 1:nlines),

if (isappdata(phndls(i),’Rune’)),

tag = get(hndls(i),’Tag’);

parent = getappdata(phndls(i),’Rune’);

if (isempty(tag)), % generate a name if not given one

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndls(i),’tag’,tag);

end;

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new text

keys = lower(fieldnames(builtin(’set’,hndls(i))));

values = unempty(builtin(’get’,hndls(i),keys)’);

glyph = parent.budMatlab(tag, hndls(i), ’text’, keys, values);

setappdata(hndls(i),’Rune’,glyph); runify(hndls(i));

elseif (name.isFrom(location)), % Existing text - FIXME

builtin(’delete’,hndls(i));

hndls(i) = findobj(0,’tag’,tag,’type’,’text’);

return;

else, % Grafted text

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndls(i), 0, details);

glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

end;

% Return something if required

if (nargout > 0),

h = hndls;

end;

%DOUBLE/UICONTROL Make user interface controls.

% If the parent figure is shared and the uicontrol is tagged, it will be

% shared also. Otherwise, as UICONTROL.

function h = uicontrol(varargin)

% Run the original command

hndl = builtin(’uicontrol’,varargin{:});

phndl = builtin(’get’,hndl,’Parent’);

% If the parent is a glyph, and the new child is named, make it a glyph

if (isrune(phndl)),

tag = get(hndl,’Tag’);

if (~isempty(tag)),

150

parent = getappdata(phndl,’Rune’);

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new uicontrol

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’uicontrol’, keys, values);

setappdata(hndl,’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Existing uicontrol

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’type’,’uicontrol’);

return;

else, % Grafted uicontrol

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details);

glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

end;

if (nargout > 0),

h = hndl;

end;

%DOUBLE/UIMENU Create user interface menus.

% If the parent figure is shared and this menu is tagged, it will also be

% shared. If the parent menu is shared, this menu will also be shared.

function h = uimenu(varargin)

% Run the original command

hndl = builtin(’uimenu’,varargin{:});

phndl = builtin(’get’,hndl,’parent’);

pkind = builtin(’get’,phndl,’type’);

tag = builtin(’get’,hndl,’tag’);

% Decide whether to runify it

switch (pkind),

case ’figure’,

runifyit = (isrune(phndl) & ~isempty(tag));

case ’uimenu’,

runifyit = isrune(phndl);

otherwise,

runifyit = 0; % Que?

end;

if (runifyit),

151

if (isempty(tag)), % If no tag, grab a fresh one

root = getappdata(0,’Rune’);

tag = root.freshIdentifier([]); tag = tag.toString;

builtin(’set’,hndl,’tag’,tag);

end;

parent = getappdata(phndl,’Rune’);

name = parent.seek(tag);

location = getappdata(0,’RuneLocation’);

if (~name.isComplete), % Totally new uimenu

keys = lower(fieldnames(builtin(’set’,hndl)));

values = unempty(builtin(’get’,hndl,keys)’);

glyph = parent.budMatlab(tag, hndl, ’uimenu’, keys, values);

setappdata(hndl,’Rune’,glyph); runify(hndl);

elseif (name.isFrom(location)), % Already here. Sigh.

builtin(’delete’,hndl);

hndl = findobj(0,’tag’,tag,’kind’,’uimenu’);

return;

else,

details = parent.graftStart(name);

details = unmarshal(details);

handles = runify(hndl, 0, details);

glyph = details{5};

parent.graftFinish(glyph, handles);

end;

end;

if (nargout > 0),

h = hndl;

end;

Matlab callback definitions

The following are meant to be stored as callbacks in shared handle graphics ob-

jects. They query the facet for the callback value to execute, and then execute

it. How the facet notifies the rest of the mirror is described in section 3.3.3.

The full set of callback properties are Callback, ButtonDownFcn, CloseReqFcn,

CreateFcn, DeleteFcn, KeyPressFcn, ResizeFcn, WindowButtonDownFcn,

WindowButtonUpFcn, WindowButtonMotionFcn and CloseRequestFcn. Repre-

sentative samples are listed below; the others are similar.

%RUNECALLBACK Slot-in for the Callback.

function RuneCallback()

h = builtin(’get’,0,’CallbackObject’);

152

if (isempty(h)), return; end;

% Retrieve and execute callback.

if (isappdata(h,’RuneCallback’)),

c = getappdata(h,’RuneCallback’); eval(c); return;

else,

k = lower(builtin(’get’,h,’style’));

r = getappdata(h,’Rune’);

c = r.get(’callback’,1); c = c.toString; eval(c);

switch (k),

case {’edit’,’text’}

r.set(’string’,builtin(’get’,h,’string’));

otherwise,

r.set(’value’,builtin(’get’,h,’value’));

end;

end;

%RUNEBUTTONDOWN Slot-in for the ButtonDownFcn callback.

function RuneButtonDown()

h = builtin(’get’,0,’CallbackObject’);

if (isempty(h)), return; end;

if (isappdata(h,’RuneButtonDownFcn’)),

c = getappdata(h,’RuneButtonDownFcn’); eval(c);

else,

r = getappdata(h,’Rune’);

c = r.get(’buttondownfcn’,1); c = c.toString;

eval(c);

end;

%RUNECREATE Slot-in for the CreateFcn callback.

function RuneCreate

h = get(0,’CallbackObject’);

unrunify(h);

%RUNEDELETE Slot-in for the DeleteFcn callback.

function RuneDelete()

h = get(0,’CallbackObject’);

if (isempty(h)), return; end;

% Get the DeleteFcn

if (isappdata(h,’RuneDeleteFcn’)),

153

call = getappdata(h,’RuneDeleteFcn’);

else,

r = getappdata(h,’Rune’);

call = r.get(’deletefcn’,1); call = call.toString;

end;

% Do the deed

r.dispose;

eval(call);

Matlab/Java bridging code

The various interfaces between Matlab and Java are subtly inconsistent. The

functions below are used by the rest of the mirror toolbox to compensate for

this, and for other minor utilities.

%UNMANGLE Turn some keys and values into acceptable properties.

% Feed it a cell array of property names, and another of values.

% It will spit out the corrected keys and values.

% Intended for use by DOUBLE/SET.

function [newkeys, newvals] = unmangle(keys,values)

% Ensure the arguments are cell arrays - wasteful, but...

if (ischar(keys)), keys = {keys}; values = {values}; end;

% Unmangle the values into a new pair of cell vectors.

nvals = length(keys); newvals = cell(size(values));

for i=1:nvals,

switch lower(keys{i}),

otherwise,

% N by M matrices are split into cell arrays; need concatenating

if (iscell(values{i}) & ~isempty(values{i}) ...

& isa(values{i}{1},’double’)),

newvals{i} = cat(1,values{i}{:})

disp(’Catting.’);

else,

newvals{i} = values{i};

end;

end;

end;

% Weed out properties that can’t be transferred.

forbidden = {’currentaxes’,’currentmenu’,’currentobject’,’currentfigure’,...

’parent’, ’children’,’uicontextmenu’, ...

’pointershapehotspot’,’pointershapecdata’, ...

’xlabel’,’ylabel’,’zlabel’,’title’};

[newkeys, idx] = setdiff(keys,forbidden);

newvals = newvals(idx);

154

%UNEMPTY Replaces [] with {} in cell arrays, sans error checking.

% Necessary because the Java/Matlab interface can’t handle cell arrays

% with both empty strings ’’ and empty numeric matrices [] in them.

% Empty cell arrays {} make a good substitute, which is reversed by

% whichever Java function uses the cell array.

function out = unempty(in)

if (~iscell(in)), out = in; return; end;

out = cell(size(in));

for (i=1:length(in)),

x = in{i};

if (isempty(x)),

if (isa(x,’double’)),

out{i} = {};

else

out{i} = x;

end;

else,

if (iscell(x)),

out{i} = unempty(x);

else,

out{i} = x;

end;

end;

end;

%STDSET Set object properties.

% Slow as sin, due to substantial preprocessing.

function success = stdset(hndl, props, values)

try,

[props, values] = unmangle(props, values);

builtin(’set’,hndl,props,values); success = 1;

catch,

warning(lasterr);

success = 0;

end;

%SETARGS Dissects input arguments for DOUBLE/SET and STDSET.

function [props, vals, nkeys] = setargs(varargin)

if (nargin == 0),

nkeys = 0; props = []; vals = [];

elseif ((nargin==1) & ischar(varargin{1})),

nkeys = 0; props = []; vals = [];

155

else

nkeys = 0; i = 1;

props = {}; vals = {};

while (i <= nargin),

current = varargin{i};

if (ischar(current)), % ...’Property’,Value,...

if (i+1 <= nargin),

nkeys = nkeys + 1;

props{nkeys} = current; vals{nkeys} = varargin{i+1};

i = i+2;

else,

error([’Missing property for ’ current]);

end;

elseif (iscell(current)), % Cell array of properties, values

if (i+1 <= nargin),

values = varargin{i+1};

if (iscell(values)),

nkeys = nkeys + length(values);

props = cat(1, props, current);

vals = cat(1, vals, current);

i = i+2;

else,

error(’Missing property array’);

end;

else,

error(’Missing property array at end of arguments’);

end;

elseif (isstruct(current)), % Structure array of properties, values

keys = fieldnames(current);

values = struct2cell(current);

nkeys = nkeys + length(values);

props = cat(1, props, keys);

vals = cat(1, vals, values);

i = i+1;

end;

end;

end;

Runification code

The functions below implement the Matlab side of the adoption and grafting

process described in section 3.3.3 and in previous appendices.

%RUNIFY Interpret a Concurrent Matlab runification request.

% Usage: out = runify(hndl,recursive, details)

% details = {"tag", "kind", {keys}, {values}, glyph, children...}

function out = runify(hndl, recursive, details)

156

% Parse details, install sundries as needed

if (nargin == 1),

recursive = 0; kind = lower(builtin(’get’,hndl,’type’));

else,

tag = details{1}; kind = details{2};

if (recursive), % Does not exist yet

parent = hndl; hndl = builtin(kind,’tag’,tag,’parent’,parent);

end;

disp([’Runifying ’ num2str(hndl)]);

stdset(hndl, details{3}’, details{4}’);

glyph = details{5};

setappdata(hndl,’Rune’,glyph);

recursive = 1;

end;

% Install callbacks - susceptible to optimization

stdset(hndl, ’ButtonDownFcn’,’RuneButtonDown’);

stdset(hndl, ’CreateFcn’,’RuneCreate’);

stdset(hndl, ’DeleteFcn’,’RuneDelete’);

switch (kind),

case ’figure’,

stdset(hndl,’WindowButtonDownFcn’,’RuneWindowDown’);

stdset(hndl,’WindowButtonUpFcn’,’RuneWindowUp’);

stdset(hndl,’WindowButtonMotionFcn’,’RuneWindowMotion’);

stdset(hndl,’CloseRequestFcn’,’RuneCloseReq’);

stdset(hndl,’KeypressFcn’,’RunePress’);

stdset(hndl,’ResizeFcn’,’RuneResize’);

case {’uicontrol’,’uimenu’,’uicontextmenu’},

stdset(hndl,’Callback’,’RuneCallback’);

end;

% Recurse through children

if (recursive),

nkids = length(details) - 5;

out = cell(nkids+1,1);

out{1} = hndl;

for (i=1:nkids),

out{i+1} = runify(hndl,1,details{i+5});

end;

end;

%DOUBLE/UNRUNIFY Makes a shared HG object unshared.

function unrunify(hndl)

rune = getappdata(hndl,’Rune’);

kind = builtin(’get’,hndl,’type’);

% Nuke all children.

157

for (i = allchild(hndl)),

if isappdata(i,’Rune’),

unrunify(i);

end;

end;

% Change various properties back.

putback(hndl, rune, {’buttondownfcn’,’createfcn’,’deletefcn’});

switch (kind),

case {’uicontrol’, ’uimenu’, ’uicontextmenu’},

putback(hndl, rune, {’callback’});

case ’figure’,

putback(hndl, rune, {’closerequestfcn’,’resizefcn’,’keypressfcn’,...

’windowbuttondownfcn’,’windowbuttonupfcn’,...

’windowbuttonmotionfcn’});

end;

% Erase the other evidence.

rmappdata(hndl,’Rune’);

rune.dispose;

%PUTBACK Put HG properties back the way they should be

function putback(hndl, rune, properties)

values = cells(size(properties));

for (i = 1:length(properties)), values{i} = rune.get(properties{i},0); end;

builtin(’set’,hndl,properties,values);

158

Appendix C

Test Case

This is the Matlab demonstration application used in chapter 4. The version

printed here will work without modification on Matlab over T.128 and Concur-

rent Matlab over RMI.

%TEST Tiny test case for Concurrent Matlab

function test(role)

global sFig sAxes sLine1 sLine2 sRed sBlue sText

if (nargin < 1), role = ’init’; end;

switch role,

case ’init’,

sFig = figure(’tag’,’sFig’,...

’position’,[400,400,400,400]);

sAxes = axes(’tag’,’sAxes’,...

’position’,[0,0.4,1.0,0.6]);

x = sort(rand(25,1)); y = sort(rand(25,1));

sLine1 = line(x,y); sLine2 = line(y,x);

sRed = uicontrol(’style’,’pushbutton’,’tag’,’red’,...

’string’,’Redraw’, ’callback’,’test red’,...

’backgroundcolor’,’red’,’position’,[0,80,200,80]);

sBlue = uicontrol(’style’,’pushbutton’,’tag’,’blue’,...

’string’,’Run’, ’callback’,’test blue’,...

’backgroundcolor’,’blue’,’position’,[200,80,200,80]);

sText = uicontrol(’style’,’edit’,’tag’,’sText’,...

’HorizontalAlignment’,’left’,’min’,0,’max’,4,...

’backgroundcolor’,’white’,’position’,[0,0,400,80]);

case ’red’,

x = sort(rand(25,1)); y = sort(rand(25,1));

set(sLine1, ’XData’,x,’YData’,y);

159

set(sLine2, ’XData’,y’,’YData’,x);

case ’blue’,

t = get(sText,’string’);

out = evalc(t);

set(sText,’string’,out);

end;

160

Bibliography

[1] C. Bajaj and S. Cutchin. Web based collaborative visualization of dis-
tributed and parallel simulation. In Proceedings of IEEE Parallel Visual-
ization and Graphics Symposium. IEEE, October 1999.

[2] James Begole, Mary Beth Rosson, and Clifford Shaffer. Flexible col-
laboration transparency: Supporting worker independence in replicated
application-sharing systems. ACM Transactions on Computer-Human In-
teraction, 6(2), June 1999.

[3] Gregory D. Burns, Raja B. Daoud, and James R. Vaigl. LAM: An Open
Cluster Environment for MPI. In Proceedings of the 1994 Supercomputing
Symposium. SC94, June 1994.

[4] C.A.Ellis and S.J.Gibbs. Concurrency control in groupware systems. In
Proceedings of the 1989 ACM SIGMOD international conference on Man-
agement of data, pages 399–407. ACM, 1989.

[5] Jim X. Chen, David Rine, and Horst D. Simon. Advancing interactive
visualization and computational steering. IEEE Computational Science
and Engineering, December 1996.

[6] Scott C. Doney. Major challenges confronting marine biogeochemical mod-
elling. Global Biochemical Cycles, 13(3), September 1999.

[7] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine. MIT
Press, 1994.

[8] W3C DOM Working Group. Document Object Model (DOM) Level 1 Spec-
ification (Second Edition). World Wide Web Consortium, 2000.

[9] Robert Haimes. pv3: A distributed system for large-scale unsteady CFD
visualization. Technical Report 94-0321, American Institute of Aeronautics
and Astronautics, 1994.

[10] International Telecommunication Union. Recommendation T.128 - Multi-
point application sharing, February 1998.

[11] J.F.Baldomero. LAM/MPI toolbox for matlab. World Wide Web,
http://atc.ugr.es/javier-bin/mpitb eng.

161

[12] Kirk E. Jordan, David A. Yuen, Davis M. Reuteler, Shuxia Zhang, and
Robert Haimes. Parallel interactive visualization of 3d mantle convection.
IEEE Computation Science and Engineering, December 1996.

[13] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, C-
28(9):690–691, September 1979.

[14] Junwei Lu. ACVEM - Applied Computational and Visual Electromagnetics
for Computer Aided engineering in Classroom. In IEEE Conference on
Electromagnetic Field Computation. IEEE, 2000.

[15] The Mathworks. MATLAB Application Program Interface Guide, 5.2 edi-
tion, 1998.

[16] Message Passing Interface Forum. MPI: A Message Passing Interface Stan-
dard, 1995.

[17] Message Passing Interface Forum. MPI-2: Extensions to the Message Pass-
ing Interface, 1996.

[18] Ernest H. Page and Jeffrey M. Opper. Observations on the complexity
of composable simulation. In Proceedings of the 1999 Winter Simulation
Conference. MITRE Corporation, 1999.

[19] Alex Pang, Craig M. Wittenbrink, and Tom Goodman. CSpray: A collab-
orative scientific visualization application. IEEE Multimedia, March 1997.

[20] Pau’l Pauca, Kun Liu, Joel Hollingsworth, and Rudy Mar-
tinez. Parallel toolbox for matlab. World Wide Web,
http://www.mthcsc.wfu.edu/pt/pt.html, 1995.

[21] S. Pawletta, T. Pawletta, and W. Drewelow. Distributed and parallel sim-
ulation in an interactive environment. Technical report, University of Ro-
stock, 1995.

[22] P.Husbands and C.Isbell. MITMatlab: A tool for interactive supercomput-
ing. In Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing. SIAM, 1999.

[23] A. Saran, D. Agrawal, A. El Abbadi, T.R.Smith, and J.Su. Scientific mod-
eling using distributed resources. In Proceedings of the 1996 Conference on
Geographical Information Systems. Association for Computing Machinery,
1996.

[24] Paul L. Springer. Matpar: Parallel extensions for MATLAB. Technical
report, Jet Propulsion Laboratory, 1998.

[25] C. Sun and C.A.Ellis. Operational transformation in real-time group edi-
tors: Issues, algorithms, and achievements. In Proceedings of ACM Confer-
ence on Computer Supported Cooperative Work, pages 59–68. ACM, May
1998.

162

[26] C. Sun and David Chen. Consistency maintenance and conflict resolution
in real-time cooperative graphics editing systems. In Proceedings of the In-
augural Australian Symposium on Computer-Supported Cooperative Work,
pages 31–37. IEEE, August 1996.

[27] C. Sun and David Chen. A multi-version approach to conflict resolution
in distributed groupware systems. In Proceedings of the 20th IEEE In-
ternational Conference on Distributed Computing Systems, pages 316–326.
IEEE, April 1999.

[28] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving conver-
gence, causality-preservation, and intention-preservation in real-time co-
operative editing systems. ACM Transactions on Computer-Human Inter-
action, 5(1):63–108, March 1998.

[29] C. Sun and Rok Sosic. Optional locking integrated with operational trans-
formation in distributed real-time group editors. In Proceedings of the
ACM 18th Symposium on Principles of Distributed Computing, pages 43–
52. ACM, August 1999.

[30] Anne E. Trefethen, Vijay S. Menon, Chi-Chao Chang, Grzegorz J. Cza-
jkowski, Chris Myers, and Lloyd N. Trefethen. MultiMATLAB: MATLAB
on multiple processors. In SC96 Proceedings. ACM and IEEE, 1996.

[31] Jason Wood, Helene Wright, and Ken Brodie. Collaborative visualization.
Technical report, University of Leeds, 1996.

[32] John A. Zollweg and Arun Verma. Cornell Multitask Toolbox for MATLAB.
Cornell Theory Centre, 2000.

163

